Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
Câu 2:
Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
Câu 1:
Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)
\(=1\)
`T=sqrt{1/(a-b)^2+1/(b-c)^2+1/(c-a)^2}`
`=sqrt{1/(a-b)^2+1/(b-c)^2+1/(c-a)^2+2/((a-b)(b-c))+2/((b-c)(c-a))+2/((c-a)(a-b))-2/((a-b)(b-c))-2/((b-c)(c-a))-2/((c-a)(a-b))}`
`=sqrt{(1/(a-b)+1/(b-c)+1/(c-a))^2-(2(a-b+b-c+c-a))/((a-b)(b-c)(c-a))}`
`=sqrt{(1/(a-b)+1/(b-c)+1/(c-a))^2-0}`
`=sqrt{1/(a-b)+1/(b-c)+1/(c-a))^2}`
`=|1/(a-b)+1/(b-c)+1/(c-a)|`
a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)
Sửa đề: \(B=\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}\)
\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)
\(=\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)
\(=\sqrt{a-1}+1+1-\sqrt{a-1}=2\)
ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a< >1\end{matrix}\right.\)
\(B=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}+\sqrt{a}\right)\left(\dfrac{\sqrt{a}-1}{a-1}\right)^2\)
\(=\left(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}+\sqrt{a}\right)\left(\dfrac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)^2\)
\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\cdot\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
Lời giải:
\(A=\frac{2a^2+4}{(1-a)(1+a)}-\frac{1-\sqrt{a}+1+\sqrt{a}}{(1+\sqrt{a})(1-\sqrt{a})}=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2}{1-a}\)
\(=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2(1+a)}{(1-a)(1+a)}=\frac{2a^2-2a+2}{(1-a)(1+a)}=\frac{2(a^2-a+1)}{1-a^2}\)
\(B=\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}\)
\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)
\(=\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)
\(=\left[{}\begin{matrix}2\sqrt{a-1}\text{ với }a\ge2\\2\text{ với }1\le a\le2\end{matrix}\right.\)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
\(đkxđ\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
\(A=\)\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{\sqrt{a}.\sqrt{a}}{2\sqrt{a}}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{\left(a-1\right)^2.-4\sqrt{a}}{4a\left(a-1\right)}=\frac{a-1}{\sqrt{a}}\)
\(b,A< 0\Rightarrow\frac{a-1}{\sqrt{a}}< 0\)
Mà \(\sqrt{a}\ge0\Rightarrow a-1\le0\Rightarrow a\le1\)
\(A=2\Rightarrow\frac{a-1}{\sqrt{a}}=2\)
\(\Rightarrow a-1=2\sqrt{a}\Rightarrow a-2\sqrt{a}-1=0\)
\(\Rightarrow a-2\sqrt{a}+1-2=0\)
\(\Rightarrow\left(\sqrt{a}-1\right)^2-\sqrt{2}^2=0\)
\(\Rightarrow\left(\sqrt{a}-1-\sqrt{2}\right)\left(\sqrt{a}-1+\sqrt{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=1+\sqrt{2}\\\sqrt{a}=1-\sqrt{2}\end{cases}\Rightarrow\orbr{\begin{cases}a=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\\a=\left(1-\sqrt{2}\right)^2=3-2\sqrt{2}\end{cases}}}\)
\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{a-1}\)
\(=\frac{a-1}{4a}.\frac{2\sqrt{a}.\left(-2\right)}{1}\)
\(=\frac{a-1}{4a}.\frac{-4\sqrt{a}.}{1}\)
\(=\frac{1-a}{\sqrt{a}}\)
C = a 2 − a a + a + 1 − a 2 + a a − a + 1 + a + 1 ( D K : a ≥ 0 ) C = a ( a ) 3 − 1 a + a + 1 − a ( a ) 3 + 1 a − a + 1 + a + 1 = a ( a − 1 ) − a ( a + 1 ) + a + 1 = a − a − a − a + a + 1 = a - 1 2