Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2-50}}\left(ĐKXĐ:A\ge0\right)\)
\(A^2=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)^2\left(\sqrt{x+\sqrt{x^2-50}}\right)^2\)
\(A^2=\left[x-\sqrt{50}-2\left(\sqrt{\left(x-\sqrt{50}\right).\left(x+\sqrt{50}\right)}\right)+x+\sqrt{50}\right]\left(x+\sqrt{x^2-50}\right)\)
\(A^2=\left[2x-2\left(\sqrt{x^2-50}\right)\right].\left(x+\sqrt{x^2-50}\right)\)
\(A^2=2x^2+2x\left(\sqrt{x^2-50}\right)-2x\left(\sqrt{x^2-50}\right)-2\left(\sqrt{x^2-50}\right)^2\)
\(A^2=2x^2-2\left(x^2-50\right)\)
\(A^2=100\)
\(\Rightarrow A=10\)
Trịnh Thành Công - Trang của Trịnh Thành Công - Học toán với OnlineMath đáp án là - 10 chứ không phải 10 đâu.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
ĐKXĐ: ...
Đặt \(\left(x+\frac{2}{x}\right)^2=a\ge8\Rightarrow x^2+\frac{4}{x^2}=a-4\)
\(\Rightarrow A=\sqrt{\left(a-4\right)^2-8a+50}\)
\(A=\sqrt{a^2-16a+66}\)
\(A=\sqrt{\left(a-8\right)^2+2}\ge\sqrt{2}\)
\(A_{min}=\sqrt{2}\) (khi \(a=8\) hay \(x=\pm\sqrt{2}\))
Bạn coi lại đề, đề bài này ko đúng (nhìn cái ngoặc đầu tiên ấy)
Bởi vì đúng đề như vầy thì min A bằng 0
a) \(\sqrt{12}-3\sqrt{75}+0,5\sqrt{\left(-6\right)^2\cdot3}\)
\(=2\sqrt{3}-15\sqrt{3}+0,5\sqrt{108}\)
\(=-13\sqrt{3}+3\sqrt{3}\)
\(=-10\sqrt{3}\)
b) \(3\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{4+2\sqrt{3}}\)
\(=3\left|\sqrt{2}-\sqrt{3}\right|-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=3\left(\sqrt{3}-\sqrt{2}\right)-\left|\sqrt{3}+1\right|\)
\(=3\sqrt{3}-3\sqrt{2}-\sqrt{3}-1\)
\(=2\sqrt{3}-3\sqrt{2}-1\)
c) \(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\div\frac{1}{x-2\sqrt{x}+1}\)
\(=\frac{2x+1-\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\sqrt{x}-1\)
\(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2}-50}\)
Suy ra
\(A^2=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)^2\left(x+\sqrt{x^2-50}\right)\)
\(=\left(2x-2\sqrt{x^2-50}\right)\left(x+\sqrt{x^2-50}\right)\)
\(=2\left(x-\sqrt{x^2-50}\right)\left(x+\sqrt{x^2-50}\right)\)
\(=2\left(x^2-\left(\sqrt{x^2-50}\right)^2\right)=2\left(x^2-\left(x^2-50\right)\right)=100\).
Với \(x\ge50\) thì \(x-\sqrt{50}< x+\sqrt{50}\) hay \(\sqrt{x-\sqrt{50}}< \sqrt{x+\sqrt{50}}\).
Suy ra \(A< 0\) mà \(A^2=100\) hay \(A=-10\).