Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3/4x8/9x15/16x24/25x...x899/900
A=1.3/22 x 2.4/33 x 3.5/42 x 4.6/55 x ... x 29.31/302
A=1.2.3.4...29/2.3.4.5...30 x 3.4.5.6...31/2.3.4.5...30
A=1/30 x 31/2
A=31/60
3. \(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\)
\(\Leftrightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{10.11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{2}-\frac{1}{132}\)
\(\Leftrightarrow2M=\frac{65}{132}\)
\(\Leftrightarrow M=\frac{65}{132}\div2\)
\(\Leftrightarrow M=\frac{65}{264}\)
1\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)
\(\Leftrightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)
\(\Leftrightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(\Leftrightarrow A=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4...30\right)\left(2.3.4...30\right)}\)
\(\Leftrightarrow A=\frac{1.31}{30.2}\)
\(\Leftrightarrow A=\frac{31}{60}\)
#)Giải :
\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)
\(A=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times\frac{4.6}{5.5}\times...\times\frac{49.51}{50.50}\)
\(A=\frac{1\times3\times2\times4\times3\times5\times...\times49\times51}{2\times2\times3\times3\times4\times4\times...\times50\times50}\)
\(A=\frac{1\times51}{2\times50}\)
\(A=\frac{51}{100}\)
\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)
\(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times\frac{6\times4}{5\times5}\times...\times\frac{49.51}{50\times50}\)
\(=\frac{1}{2}\times\frac{51}{50}\)
\(=\frac{51}{100}\)
1) ( \(\frac{55}{3}\): 15 + \(\frac{26}{3}\) . \(\frac{7}{2}\)) : [(\(\frac{37}{3}\) + \(\frac{62}{7}\)) . \(\frac{7}{18}\)] : \(\frac{-1704}{445}\)
= ( \(\frac{55}{3}\). \(\frac{1}{15}\) + \(\frac{91}{3}\)) : [ \(\frac{445}{21}\) . \(\frac{7}{18}\)] . \(\frac{-445}{1704}\)
= ( \(\frac{11}{9}\)+ \(\frac{91}{3}\)) : \(\frac{445}{54}\). \(\frac{-445}{1704}\) = \(\frac{284}{9}\). \(\frac{54}{445}\). \(\frac{-445}{1704}\)= \(\frac{284}{9}\). (\(\frac{54}{445}\). \(\frac{-445}{1704}\))
= \(\frac{284}{8}\). \(\frac{-9}{284}\)
= \(\frac{-9}{8}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{889}{900}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29\cdot31}{30.30}\)
\(=\frac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4....30.30}\)
\(=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4....30\right)\left(2.3.4.....30\right)}\)
\(=\frac{1.31}{30.2}=\frac{31}{60}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{899}{900}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{29.31}{30.30}\)
\(=\frac{1.2.3....29}{2.3.4....30}.\frac{3.4.5....31}{2.3.4....30}\)
\(=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
A=\(\frac{3x5}{15x9}x\frac{17x14}{-18x17}=9x\frac{-7}{9}=-7\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{899}{900}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}....\frac{29.31}{30.30}\)
\(A=\frac{1.2.3.4....29}{2.3.4....30}.\frac{3.4.5.6...31}{2.3.4...30}\)
\(A=\frac{1}{30}.\frac{31}{2}\) (Rút gọn theo chiều /// và \\\ nhé)
\(A=\frac{31}{60}\)
Chúc học tốt!~~