Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = =
b) = = = . ( Với điều kiện b # 1)
c) \(\dfrac{a^{\dfrac{1}{3}}b^{-\dfrac{1}{3}-}a^{-\dfrac{1}{3}}b^{\dfrac{1}{3}}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)= = = ( với điều kiện a#b).
d) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\) = = = =
a)
\(A=\dfrac{a^{\dfrac{4}{3}}\left(a^{-\dfrac{1}{3}}+a^{\dfrac{2}{3}}\right)}{a^{\dfrac{1}{4}}\left(a^{\dfrac{3}{4}}+a^{-\dfrac{1}{4}}\right)}=\dfrac{a^{\left(\dfrac{4}{3}-\dfrac{1}{3}\right)+}a^{\left(\dfrac{4}{3}+\dfrac{2}{3}\right)}}{a^{\left(\dfrac{1}{4}+\dfrac{3}{4}\right)}+a^{\left(\dfrac{1}{4}-\dfrac{1}{4}\right)}}=\dfrac{a+a^2}{a+1}=\dfrac{a\left(a+1\right)}{a+1}\)
\(a>0\Rightarrow a+1\ne0\) \(\Rightarrow A=a\)
\(A=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\) (ĐK: \(x\ge0;x\ne\dfrac{1}{9}\))
\(A=\left[\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}\right)^2-1^2}\right]:\left[\dfrac{\left(3\sqrt{x}+1\right)\cdot1}{3\sqrt{x}+1}-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right]\)
\(A=\left[\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}-1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\dfrac{3}{3\sqrt{x}+1}\)
\(A=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(A=\dfrac{3x+3\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(A=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\)
\(A=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
\(A=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)
\(=\dfrac{3x+3\sqrt{x}}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)
\(=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
\(P=\dfrac{a^{\dfrac{1}{3}}\cdot\sqrt{b}+b^{\dfrac{1}{3}}\cdot\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}-\sqrt[3]{ab}\)
\(=\dfrac{a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{2}}+b^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}}{a^{\dfrac{1}{6}}+b^{\dfrac{1}{6}}}-a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}\)
\(=\dfrac{a^{\dfrac{2}{6}}\cdot b^{\dfrac{3}{6}}+a^{\dfrac{3}{6}}\cdot b^{\dfrac{2}{6}}}{a^{\dfrac{1}{6}}+b^{\dfrac{1}{6}}}-a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}\)
\(=\dfrac{a^{\dfrac{2}{6}}\cdot b^{\dfrac{2}{6}}\left(a^{\dfrac{1}{6}}+b^{\dfrac{1}{6}}\right)}{a^{\dfrac{1}{6}}+b^{\dfrac{1}{6}}}-a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}\)
\(=a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}-a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}\)
=0
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)
\(=2^3+30-\dfrac{3}{2}\)
\(=36,5\)
b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)
\(=0,1^{-1}-2^2-2^{-4}\)
\(=10-4-\dfrac{1}{16}\)
\(=\dfrac{95}{16}\)
Câu a, b thì Nguyễn Quang Duy làm đúng rồi.
c) \(a^{\dfrac{4}{3}}:\sqrt[3]{a}=a^{\dfrac{4}{3}}:a^{\dfrac{1}{3}}=a^{\dfrac{4}{3}-\dfrac{1}{3}}=a\)
d) \(\sqrt[3]{b}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}-\dfrac{1}{6}}=b^{\dfrac{1}{6}}\)
Lời giải:
Ta có \(A=\frac{a^{\frac{1}{3}}-a^{\frac{7}{3}}}{a^{\frac{1}{3}}-a^{\frac{4}{3}}}-\frac{a^{\frac{1}{3}}-a^{\frac{5}{3}}}{a^{\frac{2}{3}}+a^{\frac{1}{3}}}\)
\(=\frac{\sqrt[3]{a}-\sqrt[3]{a^7}}{\sqrt[3]{a}-\sqrt[3]{a^4}}-\frac{\sqrt[3]{a}-\sqrt[3]{a^5}}{\sqrt[3]{a^2}+\sqrt[3]{a}}\)
\(=\frac{\sqrt[3]{a}(1-a^2)}{\sqrt[3]{a}(1-a)}-\frac{\sqrt[3]{a}(1-\sqrt[3]{a^4})}{\sqrt[3]{a}(1+\sqrt[3]{a})}=\frac{1-a^2}{1-a}-\frac{1-\sqrt[3]{a^4}}{1+\sqrt[3]{a}}\)
\(=1+a-\frac{1-\sqrt[3]{a^4}}{1+\sqrt[3]{a}}\)
Đặt \(\sqrt[3]{a}=t\Rightarrow A=1+t^3-\frac{1-t^4}{1+t}=1+t^3-\frac{(1-t^2)(1+t^2)}{1+t}\)
\(=1+t^3-\frac{(1-t)(1+t)(1+t^2)}{1+t}=1+t^3-(1-t)(1+t^2)\)
\(=2t^3-t^2+t\)