Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=75\left(4^{1993}+4^{1992}+...+4^2+5\right)+31\)
\(=25\left(4-1\right)\left(4^{1993}+4^{1992}+...+4^2+4+1\right)+31\)
\(=25\left(4^{1994}+4^{1993}+...+4^3+4^2+4-4^{1993}-....-4-1\right)+31\)
\(=25.\left(4^{1994}-1\right)+31\)
\(=25.4^{1994}-25+31\)
\(=25.4^{1994}+6\)
Bài giải
\(A=75\cdot\left(4^{1993}+4^{1992}+...+4^2+4\right)+31\)
Đặt \(B=4^{1993}+4^{1992}+...+4^2+4\)
\(B=4+4^2+...+4^{1992}+4^{1993}\)
\(4B=4^2+4^3+...+4^{1993}+4^{1994}\)
\(4B-B=3B=4^{1994}-4\)
\(B=\frac{4^{1994}-4}{3}\)
Thay \(B=\frac{4^{1994}-4}{3}\) vào biểu thức ta có :
\(A=75\cdot\frac{4^{1994}-4}{3}+31\)
\(B=25\cdot3\cdot\frac{4^{1994}-4}{3}+31\)
\(B=25\cdot\left(4^{1994}-4\right)+31\)
Võ Thị Thảo Minh
em hãy sử dụng đẳng thức này để rút gọn :
a2 - b2 = (a - b)(a + b)
Sửa đề:
Cách 1:
\(\left(5x-1\right)^2+2.\left(1-5x\right).\left(4+5x\right)+\left(5x+4\right)^2\)
\(=\left(1-5x\right)^2+2.\left(1-5x\right).\left(5x+4\right)+\left(5x+4\right)^2\)
\(=\left(1-5x+5x+4\right)^2\)
\(=5^2\)
\(=25\)
Cách 2:
\(\left(5x-1\right)^2+2.\left(1-5x\right).\left(4+5x\right)+\left(5x+4\right)^2\)
\(=\left(5x-1\right)^2-2.\left(5x-1\right).\left(5x+4\right)+\left(5x+4\right)^2\)
\(=\left(5x-1-5x-4\right)^2\)
\(=\left(-5\right)^2\)
\(=25\)
Ta có \(A=75\left(4^{1993}+4^{1992}+....+4+1\right)+25\)
\(\Leftrightarrow A=25\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)+25\)
Vận dụng hằng đẳng thức
\(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+...+b^{n-1}\right)\)
Ta có
\(\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)=4^{1994}-1\)
\(\Rightarrow A=25\left(4^{1994}-1\right)+25\)
\(\Leftrightarrow A=25\cdot4^{1994}\)
Vậy \(A=25\cdot4^{1994}\)