Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
a: =x^2-4-(x^2-2x-3)
=x^2-4-x^2+2x+3
=2x-1
b: \(=2x^2+3x-10x-15-2x^2+6x+x+7\)
=-8
c: \(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\)
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)
\(=2x^2-10xy+8y-2x^2-14xy\)
\(=10xy+8y-14xy\)
\(=-4xy+8y\)
\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)
\(=-4.\frac{-1}{2}+6\)
\(=2+6=8\)
\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)
\(=-2y-2xy\)
thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có
\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)
nếu có sai bn thông cảm
a, +) Xét \(x\ge0\)
\(\Rightarrow A=x+x=2x\)
+) Xét x < 0
\(\Rightarrow A=x+\left(-x\right)=0\)
Vậy...
b, +) Xét \(x\ge0\) có:
\(B=x-x=0\)
+) Xét x < 0 có:
\(B=-x-x=-2x\)
Vậy..
c, \(C=2\left(3x-1\right)-\left|5-x\right|=6x-2-\left|5-x\right|\)
+) Xét \(x\le5\) ta có:
\(C=6x-2-5+x=7x-7\)
+) Xét x > 5 ta có:
\(C=6x-2-x+5=5x+3\)
Vậy...
d, \(D=2\left(2x-1\right)-3\left|2x+3\right|=4x-2-\left|6x+9\right|\)
+) Xét \(x\ge\dfrac{-3}{2}\) có:
\(D=4x-2-6x-9=-2x-11\)
+) Xét \(x< \dfrac{-3}{2}\) ta có:
\(D=4x-2+6x+9=10x+7\)
Vậy...
a ) \(A=\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}=\frac{ax\left(a-x\right)\left(a+x\right)}{3\left(a-x\right)\left(a+x\right)}=\frac{ax}{3}\)
Thay \(a=\frac{1}{2};x=-3\), ta có :
\(A=\frac{\frac{1}{2}.-3}{3}=-\frac{1}{2}\)
b ) \(B=\frac{\left(ab+bc+cd+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}=\frac{\left[\left(ab+ad\right)+\left(bc+cd\right)\right]abcd}{ca+cb+da+db+ba-bd-ca+cd}\)
\(=\frac{\left[a\left(b+d\right)+c\left(b+d\right)\right]abcd}{ba+da+cb+cd}=\frac{\left(b+d\right)\left(a+c\right)abcd}{\left(b+d\right)\left(a+c\right)}=abcd\)
Thay \(a=-3;b=-4;c=2;d=3\), ta có :
\(B=\left(-3\right).\left(-4\right).2.3=72\)
toi bi dien
\(\text{*Với }x-3\ge0\text{ thì:}\)
\(A=5\left(x-3\right)-2\left(2x-1\right)\)
\(=5x-15-4x+2\)
\(=x-13\)
\(\text{*Với }x-3< 0\text{ thì:}\)
\(A=-5\left(x-3\right)-2\left(2x-1\right)\)
\(=-5x+15-4x+2\)
\(=-9x+17\)
\(\cdot\text{Vậy:}\)
\(A=x-13\text{ khi }x-3\ge0\)
\(A=-9x+17\text{ khi }x-3< 0\)