Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biểu thức e viết liền quá khó phân biệt ví dụ như x +1 -\(\frac{2\sqrt{x}}{\sqrt{x-1}}\)hay là x +\(\frac{1-\sqrt{2x}}{\sqrt{x-1}}\)
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
\(x+\frac{1+\sqrt{4x+1}}{2}=\frac{2x+1+\sqrt{4x+1}}{2}=\frac{\left(4x+1\right)+2\sqrt{4x+1}+1}{4}=\left(\frac{1+\sqrt{4x+1}}{2}\right)^2\)
=> \(\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}=\sqrt{\left(\frac{1+\sqrt{4x+1}}{2}\right)^2}=\frac{1+\sqrt{4x+1}}{2}\). tiếp tục n dấu căn
=> A = \(\frac{1+\sqrt{4x+1}}{2}\)
Biểu thức cần rút gọn : \(\sqrt{x+\sqrt{x+...+\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}}}\) (ĐK : \(x\ge-\frac{1}{4}\))
Ta xét : \(x+\frac{1+\sqrt{4x+1}}{2}=\frac{2x+1+\sqrt{4x+1}}{2}=\frac{4x+1+2\sqrt{4x+1}+1}{4}=\left(\frac{\sqrt{4x+1}+1}{2}\right)^2\)
\(\Rightarrow\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}=\frac{\sqrt{4x+1}+1}{2}\)
Do đó, biểu thức cần rút gọn sẽ bằng với : \(\frac{\sqrt{4x+1}+1}{2}\)
\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\cdot\dfrac{\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\left(\sqrt{x}+1\right)^2\)
Ta có: \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2\left(x+\sqrt{x}\right)}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x+\sqrt{x}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x+\sqrt{x}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-1+\sqrt{x}+1}{x-1}\)
\(=\dfrac{2\sqrt{x}}{x-1}\)