K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)

\(=\left(x-y-1-x+y-1\right)\left[\left(x-y-1\right)^2+\left(x-y-1\right)\left(x-y+1\right)+\left(x-y+1\right)^2\right]+6\left(x-y\right)^2\)

\(=-2\cdot\left[3\left(x-y\right)^2+1\right]+6\left(x-y\right)^2\)

\(=-6\left(x-y\right)^2+6\left(x-y\right)^2-2\)

=-2

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)

19 tháng 10 2023

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

5 tháng 10 2023

\(A,xy\left(2x^2-3\right)-x^2\left(5xy+y\right)+x^2y\\ =2x^3y-3xy-5x^3y-x^2y+x^2y\\ =\left(2x^3y-5x^3y\right)+\left(-x^2y+x^2y\right)-3xy\\ =-3x^3y-3xy\)

\(B,3xyz\left(y-2\right)-5yz\left(1-y\right)-8z\left(y^2-3\right)\\ =3xy^2z-6xyz-5yz+5y^2z-8y^2z+24z\\ =3xy^2z-6xyz+\left(5y^2z-8y^2z\right)-5yz+24z\\ =3xy^2z-6xyz-3y^2z-5yz+24z\)

26 tháng 8 2020

a) \(27\left(1-x\right)\left(x^2+x+1\right)+81x\left(x-1\right)\)

\(=27\left(1-x^3\right)+81\left(x^2-x\right)\)

\(=27-27x^3+81x^2-81x\)

b) \(y\left[x^2+x\left(x-y\right)+\left(x-y\right)^2\right]+\left(x-y\right)^3\)

\(=y\left[x^2+x^2-xy+x^2-2xy+y^2\right]+x^3-3x^2y+3xy^2-y^3\)

\(=y\left(3x^2-3xy+y^2\right)+x^3-3x^2y+3xy^2-y^3\)

\(=3x^2y-3xy^2+y^3+x^3-3x^2y+3xy^2-y^3=x^3\)

26 tháng 8 2020

a, \(27\left(1-x\right)\left(x^2+x+1\right)+81x\left(x-1\right)=27-27x^3+81x^2-81x\)

b, \(y\left[x^2+x\left(x-y\right)+\left(x-y\right)^2\right]+\left(x-y\right)^3\)

\(=3x^2y-3xy^2+y^3+x^3-3x^2y+3xy^2-y^3=x^3\)

24 tháng 9

A = (\(x-y\)).(\(x^2\) + \(xy\) + y2) + 2y3

A = \(x^3\) - y3 + 2y3

A = \(x^3\) + y3

Thay \(x=\dfrac{2}{3}\); y = \(\dfrac{1}{3}\) vào biểu thức

A = \(x\)3 +  y3 ta có:

A = (\(\dfrac{2}{3}\))3 + (\(\dfrac{1}{3}\))3

A = \(\dfrac{8}{27}\) + \(\dfrac{1}{27}\)

A = \(\dfrac{9}{27}\)

A = \(\dfrac{1}{3}\)