\(\sqrt{\frac{2+\sqrt{3}}{2}}-\sqrt{\frac{2-\sqrt{3}}{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

\(=\sqrt{\frac{6}{2}}\)

2 tháng 4 2017

= 1 em chỉ biết kết quả bằng 1 thôi chứ em ko biết trình bày vì em mới có lớp 6 thôi 

17 tháng 8 2016
  • \(\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{2}\)
  • \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{5}\)
  • \(\frac{2\sqrt{3}-\sqrt{6}}{1-\sqrt{3}}=\frac{-\sqrt{6}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{6}\)
  • \(\frac{a-\sqrt{a}}{1-\sqrt{a}}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
  • \(\frac{p-2\sqrt{p}}{\sqrt{p}-2}=\frac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
23 tháng 6 2017

a) \(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\)

b) \(\frac{1}{2\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}=\frac{2\sqrt{3}}{12}+\frac{2\sqrt{3}}{6}-\frac{6-2\sqrt{3}}{6}\)

\(=\frac{2\sqrt{3}}{12}+\frac{4\sqrt{3}}{12}-\frac{12-4\sqrt{3}}{12}=\frac{-12+10\sqrt{3}}{12}=\frac{-6+5\sqrt{3}}{6}\)

6 tháng 7 2019

\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)

\(=\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3}+1}}+\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3}+1}}\)

\(=\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}+\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\frac{2+\sqrt{3}}{1-\left(\sqrt{3}-1\right)}+\frac{2-\sqrt{3}}{1+\sqrt{3}+1}\)

\(=\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}\)

\(=14\)

6 tháng 7 2019

\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+4+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\frac{\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2}{\sqrt{2}+\sqrt{3}+2}\)

\(=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)

\(=1+\sqrt{2}\)

8 tháng 7 2018

\(a.\sqrt{\frac{2-\sqrt{3}}{2}}+\frac{1-\sqrt{3}}{2}\)

\(=\sqrt{\frac{2\left(2-\sqrt{3}\right)}{4}}+\frac{1-\sqrt{3}}{2}\)

\(=\frac{\sqrt{4-2\sqrt{3}}}{2}+\frac{1-\sqrt{3}}{2}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}+\frac{1-\sqrt{3}}{2}\)

\(=\frac{\sqrt{3}-1+1-\sqrt{3}}{2}\) ( Vì \(\sqrt{3}-1>0\))

\(=0\)

b) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{2-\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}+\frac{\sqrt{3}}{3}-\frac{2\left(3-\sqrt{3}\right)}{3^2-\left(\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+\sqrt{3}-\frac{3-\sqrt{3}}{3}\)

\(=\frac{6-3+\sqrt{3}}{3}\)

\(=\frac{3+\sqrt{3}}{3}=\frac{\sqrt{3}+1}{\sqrt{3}}\)

c) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)

\(=\frac{2\left(2-\sqrt{3}\right)}{1}+\frac{13\left(1+\sqrt{3}\right)}{13}+2\sqrt{3}\)

\(=4-2\sqrt{3}+1-\sqrt{3}+2\sqrt{3}\)

\(=5-\sqrt{3}\)

8 tháng 7 2018

ban mai thanh xuân ơi cầu c sai

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

24 tháng 6 2017

HÌNH NHƯ BẰNG 1,414213562

24 tháng 6 2017

A=\(\sqrt{2}\), cái kết quả này bấm máy tính là ra được, quan trọng là phải làm thế nào để ra

26 tháng 7 2018

Giup mình phần 3,4,5 của bài 2 với bài 4 nữa . Helpppp me !!