Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm nốt ::v
\(2.3\sqrt{\left(a-2\right)^2}=3\text{ |}a-2\text{ |}=3\left(a-2\right)\left(a< 2\right)\)
\(3.\sqrt{81a^4}+3a^2=\sqrt{3^4.a^4}+3a^2=9a^2+3a^2=12a^2\)
\(4.\sqrt{64a^2}+2a=\text{ |}8a\text{ |}+2a=8a+2a=10a\left(a>=0\right)\)
\(6.\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}=\text{ |}a+3\text{ |}+\text{ |}a-3\text{ |}\)
\(7.\dfrac{\sqrt{1-2x+x^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\text{ |}x-1\text{ |}}{x-1}\)
\(8.\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{\text{ |}3x-1\text{ |}}{\left(3x-1\right)\left(3x+1\right)}\)
\(9.4-x-\sqrt{4-4x+x^2}=4-x-\sqrt{\left(x-2\right)^2}=4-x-\text{ |}x-2\text{ |}\)
Mình làm ba câu mẫu, bạn theo đó mà làm các câu còn lại.
Giải:
1) \(2\sqrt{a^2}\)
\(=2\left|a\right|\)
\(=2a\left(a\ge0\right)\)
Vậy ...
5) \(3\sqrt{9a^6}-6a^3\)
\(=3\sqrt{\left(3a^3\right)^2}-6a^3\)
\(=3.3a^3-6a^3\)
\(=9a^3-6a^3\)
\(=3a^3\)
Vậy ...
10) \(C=\sqrt{4x^2-4x+1}-\sqrt{4x^2+4x+1}\)
\(\Leftrightarrow C=\sqrt{\left(2x-1\right)^2}-\sqrt{\left(2x+1\right)^2}\)
\(\Leftrightarrow C=2x-1^2-\left(2x+1^2\right)\)
\(\Leftrightarrow C=2x-1-2x-1\)
\(\Leftrightarrow C=-2\)
Vậy ...
a) \(\sqrt{-9a}-\sqrt{9+12a+4a^2}\) \(=\sqrt{9.\left(-a\right)}-\sqrt{\left(3+2a\right)^2}=3\sqrt{-a}-\left|3+2a\right|\)
\(=3\sqrt{9}-\left|3+2\left(-9\right)\right|=3.3-15=-6\)
b) \(1+\dfrac{3m}{m-2}\sqrt{m^2-4x+4}=1+\dfrac{3m}{m-2}\sqrt{\left(m-2\right)^2}=1+\dfrac{3m\left|m-2\right|}{m-2}\)
\(=\left\{{}\begin{matrix}1+3m\left(nếu\left(m-2\right)>0\right)\\1-3m\left(nến\left(m-2\right)< 0\right)\end{matrix}\right.\) \(=\left\{{}\begin{matrix}1+3m\left(nếu\left(m>2\right)\right)\\1-3m\left(nếu\left(m< 2\right)\right)\end{matrix}\right.\)
ta có : \(m=1,5< 2\) vậy giá trị của biểu thức tại m = 1,5 là \(1-3m\) = \(1-3.1,5=-3,5\)
c) \(\sqrt{1-10a+25a^2}-4a=\sqrt{\left(1-5a\right)^2}-4a=\left|1-5a\right|-4a\)
\(=\left\{{}\begin{matrix}1-9a\left(nếu\left(1-5a\right)\ge0\right)\\a-1\left(nếu\left(1-5a\right)< 0\right)\end{matrix}\right.\) \(=\left\{{}\begin{matrix}1-9a\left(nếu\left(a\le\dfrac{1}{5}\right)\right)\\a-1\left(nếu\left(a>\dfrac{1}{5}\right)\right)\end{matrix}\right.\)
ta có : \(a=\sqrt{2}>\dfrac{1}{5}\) vậy giá trị của biểu thức tại \(a=\sqrt{2}\) là a - 1 = \(\sqrt{2}-1\)
d) \(4x-\sqrt{9x^2+6x+1}=4x-\sqrt{\left(3x+1\right)^2}=4x-\left|3x+1\right|\)
\(=\left\{{}\begin{matrix}x-1\left(nếu\left(x\ge-\dfrac{1}{3}\right)\right)\\7x+1\left(nếu\left(x< -\dfrac{1}{3}\right)\right)\end{matrix}\right.\)
ta có : \(x=-\sqrt{3}< -\dfrac{1}{3}\) vậy giá trị của biểu thức tại \(x=-\sqrt{3}\) là \(7.\left(-\sqrt{3}\right)+1=1-7\sqrt{3}\)
a) \(13-\sqrt{\left(8x-1\right)^2}=\sqrt{x^2}\) (*)
\(\Leftrightarrow13-\left|8x-1\right|=\left|x\right|\)
Th1: \(8x-1\ge0\Leftrightarrow x\ge\dfrac{1}{8}\)
(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(N\right)\)
Th2: \(x\le0\)
(*) \(\Leftrightarrow13+8x-1=-x\Leftrightarrow9x=-12\Leftrightarrow x=-\dfrac{4}{3}\left(N\right)\)
Th3: \(\left\{{}\begin{matrix}8x-1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow\dfrac{1}{8}\le x\le0\) (vô lý)
Th4: \(\left\{{}\begin{matrix}8x-1\le0\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\dfrac{1}{8}\)
(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(L\right)\)
Kl: x= 14/9 , x= -4/3
b) \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(2x+3\right)^2}=3\Leftrightarrow\left|x+1\right|+\left|2x+3\right|=3\)(*)
Th1: \(x\ge-1\)
(*) \(\Leftrightarrow x+1+2x+3=3\Leftrightarrow3x=-1\Leftrightarrow x=-\dfrac{1}{3}\left(N\right)\)
Th2: \(x\le-\dfrac{3}{2}\)
(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(N\right)\)
Th3: \(\left\{{}\begin{matrix}x+1\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow-1\le x\le-\dfrac{3}{2}\) (vô lý)
Th4: \(\left\{{}\begin{matrix}x+1\le0\\2x+3\ge0\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}\le x\le-1\)
(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(L\right)\)
Kl: x= -1/3 , x= -7/3
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
b)\(\sqrt{9-4\sqrt{5}}\)=\(\sqrt{9-\sqrt{80}}\)=\(\sqrt{\dfrac{9+\sqrt{9^2-80}}{2}}-\sqrt{\dfrac{9-\sqrt{9^2-80}}{2}}\)=\(\sqrt{5}\)\(-\)\(\sqrt{4}\)=\(2-\sqrt{5}\)
(dựa theo công thức có sẵn từ một quyển sách nâng cao:\(\sqrt{A\pm\sqrt{B}}\)=\(\sqrt{\dfrac{A+\sqrt{A^2-B}}{2}}\pm\sqrt{\dfrac{A-\sqrt{A^2-B}}{2}}\)
c: \(\Leftrightarrow4x^2-6x+9=16\)
\(\Leftrightarrow4x^2-6x-7=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{37}}{4};\dfrac{3-\sqrt{37}}{4}\right\}\)
d: \(=\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\)
\(=\dfrac{1}{2}\sqrt{3}+\dfrac{5}{2}\)
a) \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}}}\)
\(=\sqrt{1+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{2}\right)}=1\)
b) \(A=\sqrt{x^2-6x+9}-\dfrac{x^2-9}{\sqrt{9-6x+x^2}}\)
\(=\left|x-3\right|-\dfrac{\left(x-3\right)\left(x+3\right)}{\left|x-3\right|}\)
Th1: x-3 < 0
\(A=\left(3-x\right)-\dfrac{\left(x-3\right)\left(x+3\right)}{3-x}=3-x+x-3=0\)
Th2: x-3 > 0
\(A=x-3-\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x-3-\left(x+3\right)=-6\)
c)
Đk: x >/ 1 \(B=\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
\(=\dfrac{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
\(=\dfrac{\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|}{\left|x-2\right|}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
Th1: \(x-2\ge0\Leftrightarrow x\ge2\)
\(B=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}+1}{x-2}\cdot\dfrac{x-2}{\sqrt{x-1}}=\dfrac{2}{\sqrt{x-1}}\)
Th2: \(x-2\le0\Leftrightarrow x\le2\)
kết hợp với đk, ta được: 1 \< x \< 2
\(=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}-1}{2-x}\cdot\dfrac{x-2}{\sqrt{x-1}}=0\)
d) \(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
chẳng biết có sai sót gì 0 nữa, xin lỗi tớ 0 xem lại đâu vì chán quá!
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........
a, \(\sqrt{6x^2-6x\sqrt{6}+9}\)
\(=\sqrt{\left(x\sqrt{6}+3\right)^2}\)
\(=x\sqrt{6}+3\)
Thay \(x=\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{2}{3}}\)vào biểu thức ta có:
\(\sqrt{6}\left(\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{2}{3}}\right)+3\)
\(=\sqrt{9}-\sqrt{4}+3\)
\(=3-2+3=4\)
b, \(\sqrt{9\left(1-6x+9x^2\right)}\)
\(=\sqrt{9\left(1-3x\right)^2}\)
\(=3\left(1-3x\right)\)
Thay \(x=-\sqrt{2}\) vào biểu thức ta có:
\(3\left(1-3.\left(-\sqrt{2}\right)\right)\)
\(=3\left(1+3\sqrt{2}\right)\)
\(=3+9\sqrt{2}\)
c, \(\sqrt{1-6a+9a^2}+3a\)
\(=\sqrt{\left(1-3a\right)^2}+3a\)
\(=1-3a+3a=1\)
Nó bằng 1 rồi nên khỏi thay nhé
cảm ơn bạn nhiều nhé!