K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

\(A=\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right):\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)\)

\(A=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\times\frac{\sqrt{x^2-1}}{\sqrt{x+1}-\sqrt{x-1}}\)

\(A=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\)

Thay \(x=\frac{a^2+b^2}{2ab}\)vào A, ta được : 

\(A=\frac{\sqrt{\frac{a^2+b^2}{2ab}+1}+\sqrt{\frac{a^2+b^2}{2ab}-1}}{\sqrt{\frac{a^2+b^2}{2ab}+1}-\sqrt{\frac{a^2+b^2}{2ab}-1}}\)

\(A=\frac{\sqrt{\frac{\left(a+b\right)^2}{2ab}}+\sqrt{\frac{\left(b-a\right)^2}{2ab}}}{\sqrt{\frac{\left(a+b\right)^2}{2ab}}-\sqrt{\frac{\left(b-a\right)^2}{2ab}}}\)

\(A=\frac{a+b\sqrt{\frac{1}{2ab}}+\left(b-a\right)\sqrt{\frac{1}{2ab}}}{a+b\sqrt{\frac{1}{2ab}}-\left(b-a\right)\sqrt{\frac{1}{2ab}}}\)

\(A=\frac{a+b+b-a}{a+b-b+a}\)

\(A=\frac{2b}{2a}\)

\(A=\frac{b}{a}\)

                            Ps : Nhớ k cho tui nhó, tui đã rất cố gắng rồi đấy. :)) K để lần sau có j tui giải giúp cho :)))

                                                                                                                                         # Aeri #