Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
\(=\frac{3\left(2-\sqrt{3}\right)}{2^2-3}+\frac{13\left(4+\sqrt{3}\right)}{4^2-3}+\frac{6\sqrt{3}}{3}\)
\(=3\left(2-\sqrt{3}\right)+\left(4+\sqrt{3}\right)+2\sqrt{3}\)
\(=3.2+4=6+4=10\)
b) \(=\left[\frac{\left(\sqrt{14}-\sqrt{7}\right)\left(\sqrt{2}+1\right)}{2-1}+\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{3-1}\right]:\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\) (nhân bung mấy cái trong ngoặc vuông ra, rút gọn)
c) Gợi ý: \(28-10\sqrt{3}=5^2-2.5.\sqrt{3}+\sqrt{3}=\left(5-\sqrt{3}\right)^2\)
d) \(=\frac{3\left(3-2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}+\frac{3\left(3+2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}=-6\)
e) Tự làm.
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)
\(\frac{2}{\sqrt{7}-5}-\frac{2}{\sqrt{7}+5}=\frac{2\sqrt{7}+10}{\left(\sqrt{7}-5\right)\left(\sqrt{7}+5\right)}-\frac{2\sqrt{7}-10}{\left(\sqrt{7}-5\right)\left(\sqrt{7}+5\right)}=\frac{20}{7-25}=\frac{20}{-18}=\frac{10}{-9}\)
\(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}=\frac{12+2\sqrt{35}+12-2\sqrt{35}}{2}=\frac{24}{2}=12\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right)\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\left(\sqrt{7}+\sqrt{5}\right)}{\sqrt{5}-\sqrt{7}}=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}=\frac{12+2\sqrt{35}}{-2}=-6-\sqrt{35}\)
\(\frac{3}{\sqrt{5}-2}+\frac{2}{\sqrt{5}+3}-\frac{1}{\sqrt{5}+4}=\frac{3\left(\sqrt{5}+2\right)}{5-4}+\frac{2\left(\sqrt{5}-3\right)}{5-9}-\frac{\sqrt{5}-4}{5-16}\)
\(=3\sqrt{5}+6+\frac{2\sqrt{5}-6}{-4}+\frac{4-\sqrt{5}}{-11}=\frac{66\sqrt{5}+132}{22}+\frac{33-11\sqrt{5}}{22}+\frac{2\sqrt{5}-8}{22}\)
\(=\frac{66\sqrt{5}-11\sqrt{5}+2\sqrt{5}+132+33-8}{22}=\frac{57\sqrt{5}+157}{22}\)
tu lam di cau nao kho thi hoi hoi vay ko ai tra loi cho dau
cau e)
\(A=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)(suy ra A>=0)
\(A^2=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
\(A^2=1\)
A=1
(bai toan co nhieu cach)
cau m)
\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}\)
\(=1\)
cau G)
\(=\frac{5\sqrt{7}}{\sqrt{35}}-\frac{7\sqrt{5}}{\sqrt{35}}+\frac{2\sqrt{70}}{\sqrt{35}}\)
\(=\frac{5}{\sqrt{5}}-\frac{7}{\sqrt{7}}+2\sqrt{2}\)
\(=\sqrt{5}-\sqrt{7}+2\sqrt{2}\)