\(\frac{1-x^3}{1-x}-x\)) : \(\frac{1-x^2}{1-x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

\(A=\left(\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}-x\right):\frac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)

\(=\left(1+x+x^2-x\right):\frac{1}{1-x}=\left(1+x^2\right)\left(1-x\right)\)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

4 tháng 7 2017

a. A=\(1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(=1+\left(\frac{x+1+x+1-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right).\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)

\(=1+\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)

\(=1+\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)

\(=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)

b.\(\left|x-\frac{3}{4}\right|=\frac{5}{4}\Rightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)

Với \(x=2\Rightarrow A=\frac{2-1}{2+1}=\frac{1}{3}\)

Với \(x=-\frac{1}{2}\Rightarrow A=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)

Bài 1: 

a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)

\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)

b: Thay x=1/3 vào A, ta được:

\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)

11 tháng 8 2016

Có: \(P=A:B=\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\left(ĐK:x\ne1\right)\)

\(=\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]:\left(\frac{x^2+1-2x}{x^2+1}\right)\)

\(=\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]:\frac{\left(x-1\right)^2}{x^2+1}\)

\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\cdot\frac{x^2+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}\cdot\frac{x^2+1}{\left(x-1\right)^2}=\frac{1}{x-1}\)

b) Để \(P>-\frac{1}{2}\)

\(\Leftrightarrow\)\(\frac{1}{x-1}>-\frac{1}{2}\)

\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{1}{2}>0\)

\(\Leftrightarrow\)\(\frac{2+x-1}{2\left(x-1\right)}>0\)

\(\Leftrightarrow\)\(\frac{x+1}{2\left(x-1\right)}>0\)

\(\Leftrightarrow\begin{cases}x+1>0\\2\left(x-1\right)>0\end{cases}\) hoặc \(\begin{cases}x+1< 0\\2\left(x-1\right)< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>-1\\x>1\end{cases}\) hoặc \(\begin{cases}x< -1\\x< 1\end{cases}\)

\(\Leftrightarrow x>1\) hoặc \(x< -1\)

11 tháng 8 2016

mẹ

4 tháng 5 2019

a, \(Đkxđ:\hept{\begin{cases}x\ne1\\x\ne\pm3\end{cases}}\)

\(P=\left(1+\frac{1}{x-1}\right):\left(\frac{x^2-7}{x^2-4x+3}+\frac{1}{x-1}+\frac{1}{3-x}\right)\)

\(=\left(\frac{x-1}{x-1}+\frac{1}{x-1}\right):\left(\frac{x^2-7}{\left(x-1\right)\left(x-3\right)}+\frac{1}{x-1}-\frac{1}{x-3}\right)\)

\(=\left(\frac{x-1+1}{x-1}\right):\left(\frac{x^2-7+x-3-\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}\right)\)

\(=\frac{x}{x-1}:\frac{x^2-7+x-3-x+1}{\left(x-1\right)\left(x-3\right)}\)

\(=\frac{x}{x-1}.\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}\)

\(=\frac{x}{x-1}.\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x}{x+3}\)

4 tháng 5 2019

b, \(|x+2|=5\)

\(\Rightarrow x+2=\hept{\begin{cases}5\Leftrightarrow x+2\ge0\Rightarrow x\ge-2\\-5\Leftrightarrow x+2< 0\Rightarrow x< -2\end{cases}}\)

Nếu \(x\ge-2\Rightarrow x+2=5\)

\(\Rightarrow x=3\)\(\left(ktmđkxđ\right)\)

Nếu \(x< -2\Rightarrow x+2=-5\)

\(\Rightarrow x=-7\)\(\left(tm\right)\)

Vậy \(x=-7\)

3 tháng 8 2016

\(B=\left(\frac{2x}{x-3}-\frac{x-1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\left(ĐK:x\ne\pm3\right)\)

\(=\frac{2x\left(x+3\right)-\left(x-1\right)\left(x-3\right)-x^2-1}{x^2-9}:\frac{x+3-x+1}{x+3}\)

\(=\frac{2x^2+6x-x^2+3x+x-3-x^2-1}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{4}\)

\(=\frac{10x-4}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{4}=\frac{10x-4}{4\left(x-3\right)}\)

3 tháng 8 2016

\(B=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(=\left[\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}\right]:\left(\frac{x+3-x+1}{x+3}\right)\)
\(=\left(\frac{2x^2+6x-x^2+3x-x+3-x^2-1}{\left(x+3\right)\left(x-3\right)}\right):\frac{4}{x+3}\)
\(=\frac{8x-1}{\left(x+3\right)\left(x-3\right)}.\frac{x+3}{4}\)\(=\frac{8x-1}{4\left(x-3\right)}\)


 

2 tháng 8 2015

a)\(\left(\frac{1-x^3+1-x-x}{1-x}\right):\frac{-\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^2}=\left(\frac{-x^3-2x+2}{1-x}\right)\cdot\left(1-x\right)=-x^3-2x+2\)

b) \(-\left(-1\frac{2}{3}\right)-2\cdot\left(-1\frac{2}{3}\right)+2=\frac{5}{3}+\frac{10}{3}+2=7\)