Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\left(\frac{a+2\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}+a-\sqrt{a}-a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-2\sqrt{a}}\)
\(=1+\frac{\sqrt{a}}{\left(1+\sqrt{a}\right)}\)
\(=\frac{1+\sqrt{a}+\sqrt{a}}{1+\sqrt{a}}\)
\(=\frac{1+2\sqrt{a}}{1+\sqrt{a}}\)
a) \(\frac{\sqrt{2a+4.x^2}}{\sqrt{ }x-32-xa}\)
b) \(P=3-2-\sqrt{3-x^2=3x+32a}\)
Ht
quynh ơi ,tớ trong đội bồi toán lớp 5 nè . đừng nói với tớ là cậu không biết nhé ! love you
\(\frac{\sqrt{3x^2+6xy+3y^2}}{x^2-y^2}\)
<=>\(\frac{\sqrt{3.\left(x+y\right)^2}}{\left(x-y\right).\left(x+y\right)}\)
<=>\(\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right).\left(x+y\right)}.\)
<=>\(\frac{\sqrt{3}}{x-y}\)
Lời giải:
a)
\(\sqrt{36(b-2)^2}=\sqrt{6^2(b-2)^2}=6\sqrt{(b-2)^2}=6|b-2|=6(2-b)\) do \(b<2\)
b)
\(\sqrt{b^2(b-1)^2}=\sqrt{b^2}\sqrt{(b-1)^2}=|b||b-1|\)
Do \(b< 0\Rightarrow b,b-1< 0\)
\(\Rightarrow \sqrt{b^2(b-1)^2}=|b||b-1|=-b(1-b)=b(b-1)\)
c) \(\sqrt{a^2(a+1)^2}=\sqrt{a^2}\sqrt{(a+1)^2}=|a||a+1|\)
\(=a(a+1)\) do \(a>0\)
d) \(\sqrt{(2a-1)^2}-4a=|2a-1|-4a\)
Vì \(a< \frac{1}{2}\Rightarrow 2a-1< 0\)
\(\Rightarrow \sqrt{(2a-1)^2}-4a=|2a-1|-4a=(1-2a)-4a=1-6a\)
b: \(=\left|b\cdot\left(b-1\right)\right|=b\cdot\left|b-1\right|\)
c: \(=\left|a\right|\cdot\left|a+1\right|=a\left(a+1\right)=a^2+a\)
d: \(=1-2a-4a=-6a+1\)
Đáp án đúng : C