K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

Giải:

a) \(A=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\)

\(\Leftrightarrow2A=2\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\)

\(\Leftrightarrow2A=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)\)

\(\Leftrightarrow2A=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3^2-1\right)\)

\(\Leftrightarrow2A=\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)\)

\(\Leftrightarrow2A=\left(3^8+1\right)\left(3^8-1\right)\)

\(\Leftrightarrow2A=3^{16}-1\)

\(\Leftrightarrow A=\dfrac{3^{16}-1}{2}\)

Vậy ...

b) \(B=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)

\(\Leftrightarrow2B=2.12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)

\(\Leftrightarrow2B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)

\(\Leftrightarrow2B=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)

\(\Leftrightarrow2B=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)

...

\(\Leftrightarrow2B=\left(5^{32}-1\right)\left(5^{32}+1\right)\)

\(\Leftrightarrow2B=5^{64}-1\)

\(\Leftrightarrow B=\dfrac{5^{64}-1}{2}\)

Vậy ...

4 tháng 8 2018

a) \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)

\(=\left(3x+1-3x-5\right)^2\)

\(=\left(-4\right)^2\)

\(=16\)

b) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{64}-1\right)\)

19 tháng 8 2020

Đặt \(A=12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

\(\Rightarrow2A=24.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^2-1\right).\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^4-1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^8-1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^{16}-1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^{16}\right)^2-1^2\)

     \(2A=5^{32}-1\)

\(\Rightarrow A=\frac{5^{32}-1}{2}.\)

31 tháng 5 2017

Bài 1:

A = \(12.\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

=> \(\left(5^2-1\right)A\) = \(12\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

=> 24A = \(12\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

=> A = \(\dfrac{12}{24}.\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

=> A = \(\dfrac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

=> A = \(\dfrac{1}{2}\left(5^{32}-1\right)\)

31 tháng 5 2017

Bài 2:

Ta có: \(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3\)

= \(\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

= \(a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)\left(ac+bc+c^2\right)\)

= \(a^3+b^3+c^3+3\left(a+b\right)\left(ab+bc+ca+c^2\right)\)

= \(a^3+b^3+c^3+3\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

= \(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\) => đpcm

13 tháng 11 2017

a) \(\left(x+3\right)\left(x-1\right)-2\left(x+3\right)^2+\left(x-4\right)\left(x+4\right)\)

\(=x^2-x+3x-3-2\left(x^2+6x+9\right)+x^2-16\)

\(=2x^2+2x-19-2x^2-12x-18\)

\(=-10x-37\)

b) \(\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{\left(5^2-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{5^{32}-1}{24}\)

13 tháng 11 2017

a) (x+3)(x-1)-2(x+302)+(x-4)(x+4)=x2+2x-3-2x-1800+x2-16=2x2-1819

b)...=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)=(5^4-1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)

=(5^8-1)(5^8+1)(5^16+1)/(5^2-1)=(5^16-1)(5^16+1)/(5^2-1)=(5^32-1)/(5^2-1)

13 tháng 9 2017

Nhân cả 2 vế với 2 ta có:

2P=24(52+1)(54+1)(58+1)(516+1)

2P=(52_1)(52+1)(54+1)(58+1)(516+1)

2P=(54_1)(54+1)(58+1)(516+1)

2P=(58_1)(58+1)(516+1)

2P=(516_1)(516+1)

2P=532_1

P=\(\frac{5^{32}-1}{2}\)

23 tháng 7 2019

\(8.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^2-1\right).\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^4-1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)-3^{32}=3^{32}-1-3^{32}=-1\)

7 tháng 7 2023

C