Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)
\(=\left(3x+1-3x-5\right)^2\)
\(=\left(-4\right)^2\)
\(=16\)
b) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{64}-1\right)\)
Đặt \(A=12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(\Rightarrow2A=24.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^2-1\right).\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^4-1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^8-1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}-1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}\right)^2-1^2\)
\(2A=5^{32}-1\)
\(\Rightarrow A=\frac{5^{32}-1}{2}.\)
Rút gọn biểu thức
A= 12(52 +1)(54 +1)(58 +1)(516 +1)
Chứng minh
(a+b+c)3 = a3+b3+c3+3(a+b)(b+c)(c+a)
Bài 1:
A = \(12.\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
=> \(\left(5^2-1\right)A\) = \(12\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
=> 24A = \(12\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
=> A = \(\dfrac{12}{24}.\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
=> A = \(\dfrac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
=> A = \(\dfrac{1}{2}\left(5^{32}-1\right)\)
Bài 2:
Ta có: \(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3\)
= \(\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)
= \(a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)\left(ac+bc+c^2\right)\)
= \(a^3+b^3+c^3+3\left(a+b\right)\left(ab+bc+ca+c^2\right)\)
= \(a^3+b^3+c^3+3\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
= \(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\) => đpcm
a) \(\left(x+3\right)\left(x-1\right)-2\left(x+3\right)^2+\left(x-4\right)\left(x+4\right)\)
\(=x^2-x+3x-3-2\left(x^2+6x+9\right)+x^2-16\)
\(=2x^2+2x-19-2x^2-12x-18\)
\(=-10x-37\)
b) \(\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{\left(5^2-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{5^{32}-1}{24}\)
a) (x+3)(x-1)-2(x+302)+(x-4)(x+4)=x2+2x-3-2x-1800+x2-16=2x2-1819
b)...=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)=(5^4-1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)
=(5^8-1)(5^8+1)(5^16+1)/(5^2-1)=(5^16-1)(5^16+1)/(5^2-1)=(5^32-1)/(5^2-1)
Nhân cả 2 vế với 2 ta có:
2P=24(52+1)(54+1)(58+1)(516+1)
2P=(52_1)(52+1)(54+1)(58+1)(516+1)
2P=(54_1)(54+1)(58+1)(516+1)
2P=(58_1)(58+1)(516+1)
2P=(516_1)(516+1)
2P=532_1
P=\(\frac{5^{32}-1}{2}\)
\(8.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)
\(=\left(3^2-1\right).\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)
\(=\left(3^4-1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)-3^{32}=3^{32}-1-3^{32}=-1\)
Giải:
a) \(A=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\)
\(\Leftrightarrow2A=2\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\)
\(\Leftrightarrow2A=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)\)
\(\Leftrightarrow2A=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3^2-1\right)\)
\(\Leftrightarrow2A=\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)\)
\(\Leftrightarrow2A=\left(3^8+1\right)\left(3^8-1\right)\)
\(\Leftrightarrow2A=3^{16}-1\)
\(\Leftrightarrow A=\dfrac{3^{16}-1}{2}\)
Vậy ...
b) \(B=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)
\(\Leftrightarrow2B=2.12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)
\(\Leftrightarrow2B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)
\(\Leftrightarrow2B=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)
\(\Leftrightarrow2B=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{32}+1\right)\)
...
\(\Leftrightarrow2B=\left(5^{32}-1\right)\left(5^{32}+1\right)\)
\(\Leftrightarrow2B=5^{64}-1\)
\(\Leftrightarrow B=\dfrac{5^{64}-1}{2}\)
Vậy ...