Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)
$x^4+2x^3+2x^2+2x+1$
$=(x^4+2x^3+x^2)+(x^2+2x+1)$
$=(x^2+x)^2+(x+1)^2=x^2(x+1)^2+(x+1)^2$
$=(x+1)^2(x^2+1)$
e)
$x^2y+xy^2+x^2z+y^2z+2xyz$
$=xy(x+y)+z(x^2+y^2)+2xyz$
$=xy(x+y)+z(x^2+y^2+2xy)$
$=xy(x+y)+z(x+y)^2=(x+y)(xy+zx+zy)$
f)
$x^5+x^4+x^3+x^2+x+1$
$=(x^5+x^4)+(x^3+x^2)+(x+1)=x^4(x+1)+x^2(x+1)+(x+1)$
$=(x+1)(x^4+x^2+1)$
$=(x+1)[(x^4+2x^2+1)-x^2]$
$=(x+1)[(x^2+1)^2-x^2]=(x+1)(x^2+1-x)(x^2+1+x)$
a)
$x^4-2x^3+2x-1=(x^4-2x^3+x^2)-(x^2-2x+1)$
$=(x^2-x)^2-(x-1)^2$
$=x^2(x-1)^2-(x-1)^2=(x-1)^2(x^2-1)=(x-1)^2(x-1)(x+1)$
$=(x-1)^3(x+1)$
b)
$a^6-a^4+2a^3+2a^2$
$=a^4(a^2-1)+2a^2(a+1)$
$=a^4(a-1)(a+1)+2a^2(a+1)$
$=(a+1)[a^4(a-1)+2a^2]$
$=a^2(a+1)[a^2(a-1)+2]$
$=a^2(a+1)(a^3-a^2+2)=a^2(a+1)[a^2(a+1)-2(a^2-1)]$
$=a^2(a+1)[a^2(a+1)-2(a-1)(a+1)]$
$=a^2(a+1)(a+1)(a^2-2a+2)=a^2(a+1)^2(a^2-2a+2)$
c)
$x^4+x^3+2x^2+x+1$
$=(x^4+2x^2+1)+(x^3+x)$
$=(x^2+1)^2+x(x^2+1)=(x^2+1)(x^2+1+x)$
1)\(21x^2y-12xy^2=xy.\left(21x-12y\right)\)
2)\(x^3+x^2-2x=x.\left(x^2+x-2\right)\)
3)\(3x.\left(x-1\right)+7x^2\left(x-1\right)=\left(x-1\right).\left(3x+7x^2\right)=x.\left(x-1\right)\left(3+7x\right)\)
15)\(\left(2a+3\right)^2-\left(2a+1\right)^2=\left(2a+3-2a-1\right)\left(2a+3+2a+1\right)=2.\left(4a+4\right)=8\left(a+1\right)\)
14) \(-4y^2+4y-1=-\left[\left(2y\right)^2-2.2y.1+1^2\right]=-\left(2y-1\right)^2\)
13) \(x^6+1=\left(x^2\right)^3+1=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
12) \(\left(x+1\right)^2-\left(y+6\right)^2=\left(x+1-y-6\right)\left(x+1+y+6\right)=\left(x-y-5\right)\left(x+y+7\right)\)
4) \(3x\left(x-a\right)+4a\left(a-x\right)=3x.\left(x-a\right)-4a\left(x-a\right)=\left(x-a\right)\left(3x-4a\right)\)
Sao nhiều thế!
a. \(8x\left(x-2017\right)-2x+4034=0\)
\(8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\left(8x-2\right)\left(x-2017\right)=0\)
\(\Rightarrow TH1:8x-2=0\)
\(8x=2\)
\(x=\frac{1}{4}\)
\(TH2:x-2017=0\)
\(x=2017\)
Vậy \(x\in\left\{\frac{1}{4};2017\right\}\)
Bài 1
a) \(8x\left(x-2017\right)-2x+4034=0\)
\(\Rightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)
a) \(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)
b) \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left[\left(x^2+2xy+y^2\right)+x^2-y^2+\left(x^2-2xy+y^2\right)\right]\)
\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
c) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=3y^2\left(x^4+x^3+x+1\right)\)
d) \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)
\(=4\left[\left(x^2-y^2\right)-2\left(x-ay\right)-\left(a^2-1\right)\right]\)
\(=4\left[\left(x^2-y^2\right)-\left(2x-2ay\right)-\left(a^2-1\right)\right]\)
\(=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)
P/s: Ko chắc!
c/
\(=3y^2\left(x^4+x^3+x+1\right)\)
\(=3y^2\left[x^3\left(x+1\right)+x+1\right]\)
\(=3y^2\left(x^3+1\right)\left(x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
d/
\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)
\(=4\left(x-1\right)^2-4\left(y-a\right)^2\)
\(=4\left[\left(x-1\right)^2-\left(y-a\right)^2\right]\)
\(=4\left(x-1-y+a\right)\left(x-1+y-a\right)\)
a: \(x^2\left(x-3\right)-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
b: \(2a\left(x+y\right)+x+y=\left(x+y\right)\left(2a+1\right)\)
c: \(6x^2-12x-7x+14\)
\(=6x\left(x-2\right)-7\left(x-2\right)\)
\(=\left(x-2\right)\left(6x-7\right)\)
Bài 1:
a) Ta có: \(a^2-b^2-2a+2b\)
\(=\left(a-b\right)\left(a+b\right)-2\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2\right)\)
b) Ta có: \(3x-3y-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
c) Ta có: \(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
\(=\left(-x-2y+5\right)\left(3x+2y+3\right)\)
d) Ta có: \(16-x^2+4xy-4y^2\)
\(=16-\left(x^2-4xy+4y^2\right)\)
\(=16-\left(x-2y\right)^2\)
\(=\left(4-x+2y\right)\left(4+x-2y\right)\)
e) Ta có: \(\left(x+3\right)^3+\left(x-3\right)^3\)
\(=\left(x+3+x-3\right)\left[\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\right]\)
\(=2x\cdot\left(x^2+6x+9-x^2+9+x^2-6x+9\right)\)
\(=2x\cdot\left(x^2+27\right)\)
f) Ta có: \(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
g) Ta có: \(9x^2-3xy+y-6x+1\)
\(=\left(9x^2-6x+1\right)-\left(3xy-y\right)\)
\(=\left(3x-1\right)^2-y\left(3x-1\right)\)
\(=\left(3x-1\right)\left(3x-1-y\right)\)
h) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9-4x\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
Bài 2:
Ta có: \(x^3+x^2z+y^2z-xyz+y^3\)
\(=\left(x^3+y^3\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+z\right)\)
\(=0\cdot\left(x^2-xy+y^2\right)=0\)(đpcm)
dài quá, làm từ từ nhé
1, \(\left(a-b\right)^2\left(2a-3b\right)-\left(b-a\right)^2\left(3a-5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(2a-3b-3a+5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(-a+2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=-\left(a-b\right)^2\left(a-2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-2b\right)\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)
\(=\left(a-2b\right)\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=4ab\left(a-2b\right)\)
2, \(x^4-4\left(x^2+5\right)-25=\left(x^2-25\right)-4\left(x^2+5\right)=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)
\(=\left(x^2-9\right)\left(x^2+5\right)=\left(x-3\right)\left(x+3\right)\left(x^2+5\right)\)
3,\(\left(2-x\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)=\left(x-2\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)\)
\(=\left(x-2\right)\left(x-2+x+3\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2\right)\left(2x+1\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2-2x+1\right)\left(2x+1\right)\)
\(=\left(-x-1\right)\left(2x+1\right)\)
4, câu này đề thiếu
5,\(16\left(xy+6\right)^2-\left(4x^2+y^2-25\right)^2=\left(4xy+24\right)^2-\left(4x^2+y^2-25\right)^2\)
\(=\left(4xy+24-4x^2-y^2+25\right)\left(4xy+24+4x^2+y^2-25\right)\)
\(=\left[49-\left(4x^2-4xy+y^2\right)\right]\left[\left(4x^2+4xy+y^2\right)-1\right]\)
\(=\left[49-\left(2x-y\right)^2\right]\left[\left(2x+y\right)^2-1\right]\)
\(=\left(7-2x+y\right)\left(7+2x-y\right)\left(2x+y-1\right)\left(2x+y+1\right)\)
a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)
\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)
\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)
\(=5\cdot\left(1-2xy^2\right)\)
\(=5-10xy^2\)
b) Ta có: \(9x^2-\left(3x-4\right)^2\)
\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)
\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)
\(=4\cdot\left(6x-4\right)\)
\(=24x-16\)
c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)
\(=a^2-b^4\)
d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left(a^2+2a\right)^2-9\)
\(=a^4+4a^3+4a^2-9\)
e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)
\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)
\(=x^2-y^2+12y-36\)
f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)
\(=\left(y-3\right)^2-\left(2z\right)^2\)
\(=y^2-6y+9-4z^2\)
g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(=\left(2y\right)^3-5^3\)
\(=8y^3-125\)
h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)
\(=\left(3y\right)^3+4^3\)
\(=27y^3+64\)
i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)
\(=\left(x-3\right)^3-\left(x-2\right)^3\)
\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)
\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)
\(=-3x^2+15x-19\)
j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\cdot\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)