K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)

\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)

\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)

\(=5\cdot\left(1-2xy^2\right)\)

\(=5-10xy^2\)

b) Ta có: \(9x^2-\left(3x-4\right)^2\)

\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)

\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)

\(=4\cdot\left(6x-4\right)\)

\(=24x-16\)

c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)

\(=a^2-b^4\)

d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

\(=a^4+4a^3+4a^2-9\)

e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)

\(=x^2-y^2+12y-36\)

f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)

\(=\left(y-3\right)^2-\left(2z\right)^2\)

\(=y^2-6y+9-4z^2\)

g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)

\(=\left(2y\right)^3-5^3\)

\(=8y^3-125\)

h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)

\(=\left(3y\right)^3+4^3\)

\(=27y^3+64\)

i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)

\(=\left(x-3\right)^3-\left(x-2\right)^3\)

\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)

\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)

\(=-3x^2+15x-19\)

j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

\(=6x^2y+2y^3\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

d)

$x^4+2x^3+2x^2+2x+1$

$=(x^4+2x^3+x^2)+(x^2+2x+1)$

$=(x^2+x)^2+(x+1)^2=x^2(x+1)^2+(x+1)^2$

$=(x+1)^2(x^2+1)$

e)

$x^2y+xy^2+x^2z+y^2z+2xyz$

$=xy(x+y)+z(x^2+y^2)+2xyz$

$=xy(x+y)+z(x^2+y^2+2xy)$

$=xy(x+y)+z(x+y)^2=(x+y)(xy+zx+zy)$

f)

$x^5+x^4+x^3+x^2+x+1$

$=(x^5+x^4)+(x^3+x^2)+(x+1)=x^4(x+1)+x^2(x+1)+(x+1)$

$=(x+1)(x^4+x^2+1)$

$=(x+1)[(x^4+2x^2+1)-x^2]$

$=(x+1)[(x^2+1)^2-x^2]=(x+1)(x^2+1-x)(x^2+1+x)$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

a)

$x^4-2x^3+2x-1=(x^4-2x^3+x^2)-(x^2-2x+1)$

$=(x^2-x)^2-(x-1)^2$

$=x^2(x-1)^2-(x-1)^2=(x-1)^2(x^2-1)=(x-1)^2(x-1)(x+1)$

$=(x-1)^3(x+1)$

b)

$a^6-a^4+2a^3+2a^2$

$=a^4(a^2-1)+2a^2(a+1)$

$=a^4(a-1)(a+1)+2a^2(a+1)$

$=(a+1)[a^4(a-1)+2a^2]$

$=a^2(a+1)[a^2(a-1)+2]$

$=a^2(a+1)(a^3-a^2+2)=a^2(a+1)[a^2(a+1)-2(a^2-1)]$

$=a^2(a+1)[a^2(a+1)-2(a-1)(a+1)]$

$=a^2(a+1)(a+1)(a^2-2a+2)=a^2(a+1)^2(a^2-2a+2)$

c)

$x^4+x^3+2x^2+x+1$

$=(x^4+2x^2+1)+(x^3+x)$

$=(x^2+1)^2+x(x^2+1)=(x^2+1)(x^2+1+x)$

29 tháng 8 2018

1)\(21x^2y-12xy^2=xy.\left(21x-12y\right)\)

2)\(x^3+x^2-2x=x.\left(x^2+x-2\right)\)

3)\(3x.\left(x-1\right)+7x^2\left(x-1\right)=\left(x-1\right).\left(3x+7x^2\right)=x.\left(x-1\right)\left(3+7x\right)\)

15)\(\left(2a+3\right)^2-\left(2a+1\right)^2=\left(2a+3-2a-1\right)\left(2a+3+2a+1\right)=2.\left(4a+4\right)=8\left(a+1\right)\)

14) \(-4y^2+4y-1=-\left[\left(2y\right)^2-2.2y.1+1^2\right]=-\left(2y-1\right)^2\)

13) \(x^6+1=\left(x^2\right)^3+1=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

12) \(\left(x+1\right)^2-\left(y+6\right)^2=\left(x+1-y-6\right)\left(x+1+y+6\right)=\left(x-y-5\right)\left(x+y+7\right)\)

4) \(3x\left(x-a\right)+4a\left(a-x\right)=3x.\left(x-a\right)-4a\left(x-a\right)=\left(x-a\right)\left(3x-4a\right)\)

Sao nhiều thế!

29 tháng 8 2018

Đúng là nhiều thật , dù sao cx cảm ơn bn nhìn nha!!!

29 tháng 9 2019

a. \(8x\left(x-2017\right)-2x+4034=0\)

\(8x\left(x-2017\right)-2\left(x-2017\right)=0\)

\(\left(8x-2\right)\left(x-2017\right)=0\)

\(\Rightarrow TH1:8x-2=0\)

\(8x=2\)

\(x=\frac{1}{4}\)

\(TH2:x-2017=0\)

\(x=2017\)

Vậy \(x\in\left\{\frac{1}{4};2017\right\}\)

29 tháng 9 2019

Bài 1 

a) \(8x\left(x-2017\right)-2x+4034=0\)

\(\Rightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)

\(\Rightarrow\left(x-2017\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)

30 tháng 7 2020

a) \(\left(xy+1\right)^2-\left(x+y\right)^2\)

\(=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

b) \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left[\left(x^2+2xy+y^2\right)+x^2-y^2+\left(x^2-2xy+y^2\right)\right]\)

\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)\)

c) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=3y^2\left(x^4+x^3+x+1\right)\)

d) \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=4\left[\left(x^2-y^2\right)-2\left(x-ay\right)-\left(a^2-1\right)\right]\)

\(=4\left[\left(x^2-y^2\right)-\left(2x-2ay\right)-\left(a^2-1\right)\right]\)

\(=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

P/s: Ko chắc!

NV
31 tháng 7 2020

c/

\(=3y^2\left(x^4+x^3+x+1\right)\)

\(=3y^2\left[x^3\left(x+1\right)+x+1\right]\)

\(=3y^2\left(x^3+1\right)\left(x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

d/

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=4\left(x-1\right)^2-4\left(y-a\right)^2\)

\(=4\left[\left(x-1\right)^2-\left(y-a\right)^2\right]\)

\(=4\left(x-1-y+a\right)\left(x-1+y-a\right)\)

 

15 tháng 10 2021

a: \(x^2\left(x-3\right)-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

b: \(2a\left(x+y\right)+x+y=\left(x+y\right)\left(2a+1\right)\)

c: \(6x^2-12x-7x+14\)

\(=6x\left(x-2\right)-7\left(x-2\right)\)

\(=\left(x-2\right)\left(6x-7\right)\)

Bài 1:

a) Ta có: \(a^2-b^2-2a+2b\)

\(=\left(a-b\right)\left(a+b\right)-2\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b-2\right)\)

b) Ta có: \(3x-3y-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(3+5x\right)\)

c) Ta có: \(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)

\(=\left(-x-2y+5\right)\left(3x+2y+3\right)\)

d) Ta có: \(16-x^2+4xy-4y^2\)

\(=16-\left(x^2-4xy+4y^2\right)\)

\(=16-\left(x-2y\right)^2\)

\(=\left(4-x+2y\right)\left(4+x-2y\right)\)

e) Ta có: \(\left(x+3\right)^3+\left(x-3\right)^3\)

\(=\left(x+3+x-3\right)\left[\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\right]\)

\(=2x\cdot\left(x^2+6x+9-x^2+9+x^2-6x+9\right)\)

\(=2x\cdot\left(x^2+27\right)\)

f) Ta có: \(x^4+x^3+2x^2+x+1\)

\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+x\right)\)

g) Ta có: \(9x^2-3xy+y-6x+1\)

\(=\left(9x^2-6x+1\right)-\left(3xy-y\right)\)

\(=\left(3x-1\right)^2-y\left(3x-1\right)\)

\(=\left(3x-1\right)\left(3x-1-y\right)\)

h) Ta có: \(x^3-4x^2+12x-27\)

\(=\left(x^3-27\right)-4x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+9-4x\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

Bài 2:

Ta có: \(x^3+x^2z+y^2z-xyz+y^3\)

\(=\left(x^3+y^3\right)+z\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)

\(=\left(x^2-xy+y^2\right)\left(x+y+z\right)\)

\(=0\cdot\left(x^2-xy+y^2\right)=0\)(đpcm)

7 tháng 8 2017

dài quá, làm từ từ nhé

1, \(\left(a-b\right)^2\left(2a-3b\right)-\left(b-a\right)^2\left(3a-5b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-b\right)^2\left(2a-3b-3a+5b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-b\right)^2\left(-a+2b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=-\left(a-b\right)^2\left(a-2b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-2b\right)\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)

\(=\left(a-2b\right)\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=4ab\left(a-2b\right)\)

2, \(x^4-4\left(x^2+5\right)-25=\left(x^2-25\right)-4\left(x^2+5\right)=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)

\(=\left(x^2-9\right)\left(x^2+5\right)=\left(x-3\right)\left(x+3\right)\left(x^2+5\right)\)

7 tháng 8 2017

3,\(\left(2-x\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)=\left(x-2\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)\)

\(=\left(x-2\right)\left(x-2+x+3\right)-\left(2x-1\right)\left(2x+1\right)\)

\(=\left(x-2\right)\left(2x+1\right)-\left(2x-1\right)\left(2x+1\right)\)

\(=\left(x-2-2x+1\right)\left(2x+1\right)\)

\(=\left(-x-1\right)\left(2x+1\right)\)

4, câu này đề thiếu

5,\(16\left(xy+6\right)^2-\left(4x^2+y^2-25\right)^2=\left(4xy+24\right)^2-\left(4x^2+y^2-25\right)^2\)

\(=\left(4xy+24-4x^2-y^2+25\right)\left(4xy+24+4x^2+y^2-25\right)\)

\(=\left[49-\left(4x^2-4xy+y^2\right)\right]\left[\left(4x^2+4xy+y^2\right)-1\right]\)

\(=\left[49-\left(2x-y\right)^2\right]\left[\left(2x+y\right)^2-1\right]\)

\(=\left(7-2x+y\right)\left(7+2x-y\right)\left(2x+y-1\right)\left(2x+y+1\right)\)