K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

Ta có:

\(A=\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)

\(=\left(9x-1+1-5x\right)^2\)

\(=4x^2\)

\(=16x^2\)

=(9x-1+1-5x)2=(4x)2=16x2

2 tháng 10 2021

Bài 2: Tính giá trị của biểu thức sau:

\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)

Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)

\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)

2 tháng 10 2021

Bài 4: Tìm x

a) \(9x^2+x=0\)

\(\Rightarrow x\left(9x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)

b) \(27x^3+x=0\)

\(\Rightarrow x\left(27x^2+1=0\right)\)

\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)

Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)

Vậy \(x=0\)

26 tháng 5 2023

\(a,3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=\left(3x^2+5x^2-8x^2\right)+\left(-6x-5x\right)+24\)

\(=0-11x+24\)

\(=-11x+24\)

\(b,\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x\)

\(=14x^2+7x-6x-3-5x^2-20x+2x+8-9x^2+17x\)

\(=\left(14x^2-5x^2-9x^2\right)+\left(7x-6x-20x+2x+17x\right)+\left(-3+8\right)\)

\(=0+0+5\)

\(=5\)

24 tháng 7 2018

c,4x2-20x+25-4x2-20x-25+40x-1

=-1

7 tháng 10 2021

a. 9x2 + 6x + 1 - 9x2 + 3x = 9x + 1

b. x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 + 3x = 3x + 8

Bài làm :

\(\left(9x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=9x^3-45x^2+9x-2x^2+10x-2-x^3-11x\)

\(=\left(9x^3-x^3\right)+\left(-45x^2-2x^2\right)+\left(9x+10x-11x\right)-2\)

\(=8x^3-47x^2+8x-2\)

Học tốt nhé

21 tháng 9 2020

( 9x - 2 )( x2 - 5x + 1 ) - x( x2 + 11 )

= 9x3 - 45x2 + 9x - 2x2 + 10x - 2 - x3 - 11x

= 8x3 - 47x2 + 8x - 2

10 tháng 10 2021

\(\left(3x+2\right)\left(3x-2\right)=9x^2-4\)

-> chọn D