Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{10+\sqrt{2}-\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{10+\sqrt{2}-\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}\)
\(=\sqrt{10+\sqrt{2}-\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{10+\sqrt{2}-\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{10+\sqrt{2}-\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{10+\sqrt{2}-\sqrt{2}-1}=\sqrt{9}=3\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)=\(\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)
=\(\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)=\(\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\sqrt{13+30\sqrt{2}+30}\)
=\(\sqrt{43+30\sqrt{2}}\)=\(\sqrt{\left(5+3\sqrt{2}\right)^2}\)=\(5+3\sqrt{2}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}.\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}+1}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{13+30\sqrt{2}+30}=\sqrt{43+30\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}-1\right)^2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\)
\(=3\sqrt{2}-1-2\sqrt{2}+1=\sqrt{2}\)
Bài 2:
\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Ta có: \(P=x^2-2x+2020\)
\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)
\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)
=2026
Bài 1:
\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)
=-6
a) \(P=\dfrac{x+3\sqrt{x}+x-3\sqrt{x}}{x-9}.\dfrac{x-9}{2\sqrt{x}}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)
b) \(P=\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
a: \(=\dfrac{x+3\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{x-9}{2\sqrt{x}}\)
\(=\sqrt{x}\)
\(A=\sqrt{9-4\sqrt{5}}+\frac{1}{\sqrt{5}-2}=\sqrt{\left(\sqrt{5}-2\right)^2}+\frac{1}{\sqrt{5}-2}=\sqrt{5}-2+\frac{1}{\sqrt{5}-2}.\Leftrightarrow\)
\(A=\frac{\left(\sqrt{5}-2\right)^2+1}{\sqrt{5}-2}=\frac{10-4\sqrt{5}}{\sqrt{5}-2}=\frac{\left(10-4\sqrt{5}\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=10\sqrt{5}+20-20-8\sqrt{5}=\)
\(=2\sqrt{5}\)
\(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)
\(=\sqrt{8-2\cdot\sqrt{8}\cdot2+4}+2\sqrt{2}+1\)
=2căn 2-2+2căn 2+1
=4căn 2-1
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
\(\sqrt{\dfrac{9}{4}}-\sqrt{2}+\sqrt{2}\\ =\dfrac{3}{2}-\left(\sqrt{2}-\sqrt{2}\right)\\ =\dfrac{3}{2}-0\\ =\dfrac{3}{2}\)