Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.3.5.2^3}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(2.3-1\right)}=\frac{2^{12}.3^{10}.2.3}{2^{11}.3^{11}.5}=\frac{2^{11}.3^{11}.2^2}{2^{11}.3^{11}.5}=\frac{4}{5}\)
a) \(A=1+3+3^2+...+3^{100}\)
\(3A=3+3^2+3^3+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-1\)
\(A=\frac{3^{101}-1}{2}\)
b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...-2^3+2^2-2+1\)
\(2B=2^{101}-2^{100}+2^{99}-2^{98}+...-2^4+2^3-2^2+2\)
\(B+2B=\left(2^{100}-2^{99}+...-2+1\right)+\left(2^{101}-2^{100}+...-2^2+2\right)\)
\(3B=2^{101}+1\)
\(B=\frac{2^{101}+1}{3}\)