Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)
\(A=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)
\(A=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
b) \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
c) \(C=\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)
\(C=\dfrac{-\left(2a-3\sqrt{a}+1\right)}{\left(2\sqrt{a}\right)^2-2\sqrt{a}\cdot2\cdot1+1^2}\)
\(C=\dfrac{-\left(\sqrt{a}-1\right)\left(2\sqrt{a}-1\right)}{\left(2\sqrt{a}-1\right)^2}\)
\(C=\dfrac{-\sqrt{a}+1}{2\sqrt{a}-1}\)
d) \(D=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(D=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)
\(D=\sqrt{a}+2-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(D=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)\)
\(D=0\)
a: \(=\dfrac{\left|x+2\right|}{x-1}\)
b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)
c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)
a: =>(x-7)(x+3)=0
hay \(x\in\left\{7;-3\right\}\)
b: =>2x+7=0
hay x=-7/2
c: \(\Delta=50-4\cdot6\cdot2=50-48=2\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5\sqrt{2}-\sqrt{2}}{12}=\dfrac{\sqrt{2}}{3}\\x_2=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
1) Ta có: \(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x=-1\end{matrix}\right.\)
Vậy: (x,y)=(1;-1)
2) Ta có: \(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\)
\(=\dfrac{x+20+2\left(\sqrt{x}-2\right)-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+20+2\sqrt{x}-4-6\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
a) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
c) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}=4x-\sqrt{8}+x=5x-\sqrt{8}\)
Đáp án là A