Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(3x+2\right)^2+4x-3x^2+2\left(5x-2\right)\left(5x+2\right)-75x^2\)
\(=9x^2+12x+4+4x-3x^2+50x^2-8-75x^2\)
\(=-19x^2+16x-4\)
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)=2x^3-4x^2-2x^3+2x=-4x^2+2x=-2x\left(2x-1\right)\)
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=2x^3-4x^2-2x\left(x^2-1\right)\)
\(=2x^3-4x^2-2x^3+2x=-4x^2+2x\)
a, Với x ≠ 0,x ≠ ± 5 và x ≠ 5/2 thì
P = [x/(x^2 - 25) - (x - 5)/(x^2 + 5x)] : (2x - 5)/(x^2 + 5x) + x/(x - 5)
<=>P = [x/(x - 5)(x + 5) - (x - 5)/x(x+5)] . x(x + 5)/(2x - 5) + x/(x - 5)
=> P = [x^2 - (x - 5)^2]/x(x - 5)(x + 5) . x(x + 5)/(2x - 5) + x/(x - 5)
<=> P = (x - x + 5)(x + x - 5)/(x - 5)(2x - 5) + x/(x - 5)
<=> P = 5(2x - 5)/(x - 5)(2x - 5) + x/(x - 5)
<=> P = 5/(x - 5) + x/(x - 5)
<=> P = (5 + x)/(x - 5)
b, Với x ≠ 0,x ≠ ± 5 và x ≠ 5/2 (x ∈ Z) thì P ∈ Z <=> (5 + x)/(x - 5) ∈ Z
<=> (x - 5 + 10)/(x - 5) ∈ Z
<=> 1 + 10/(x - 5) ∈ Z
<=> 10/(x - 5) ∈ Z
<=> (x - 5) ∈ Ư(10)
<=> x - 5 = 10 <=> x = 15 (TM)
hoặc x - 5 = -10 <=> x = -5 (TM)
hoặc x - 5 = 5 <=> x = 10 (TM)
hoặc x - 5 = -5 <=> x = 0 (TM)
hoặc x - 5 = 2 <=> x = 7 (TM)
hoặc x - 5 = -2 <=> x = 3 (TM)
hoặc x - 5 = -1 <=> x = 4 (TM)
hoặc x - 5 = 1 <=> x = 6 (TM)
Vậy x ∈ {-5,0,3,4,6,7,10,15} thì P ∈ Z
Ta có 2x(2x + 1)2 - 3x(x + 3)(x - 3) - 4x(x + 1)2
= 2x(4x2 + 4x + 1) - 3x(x2 - 9) - 4x(x2 + 2x + 1)
= 8x3 + 8x2 + 2x - 3x3 + 27x - 4x3 - 8x2 - 4x
= 8x3 - 3x3 - 4x3 + 8x2 - 8x2 + 2x + 27x - 4x
= x3 + 25x
a oi hinh nhu sai r con +16x2 nua co a , anh tinh lai ho e duoc kh
Lời giải:
$(2x+3)^2+(2x+5)^2=4x^2+12x+9+4x^2+20x+25$
$=8x^2+32x+34$