K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(2x - 1)2 + 2(2x - 1)(x + 1) + (x - 1)2 (Dễ dàng nhận thấy đây là HĐT số 1)

= (2x -1 + x - 1)2

= (3x - 2)2

NV
7 tháng 5 2023

\(\left(x-2\right)\left(2x^3-x^2+1\right)+\left(x-2\right).x^2.\left(1-2x\right)\)

\(=\left(x-2\right)\left(2x^3-x^2+1\right)+\left(x-2\right)\left(x^2-2x^3\right)\)

\(=\left(x-2\right)\left(2x^3-x^2+1+x^2-2x^3\right)\)

\(=\left(x-2\right).1\)

\(=x-2\)

7 tháng 5 2023

Ta có:

\(\left(x-2\right)\left(2x^3-x^2+1\right)+\left(x-2\right)x^2\left(1-2x\right)\)

\(=\left(x-2\right)\left(2x^3-x^2+1\right)+\left(x-2\right)\left(x^2-2x^3\right)\)

\(=\left(x-2\right)\left[\left(2x^3-x^2+1\right)+\left(x^2-2x^3\right)\right]\)

\(=\left(x-2\right)\left(2x^3-x^2+1+x^2-2x^3\right)\)

\(=\left(x-2\right).1\)

\(=x-2\)

 

19 tháng 9 2023

(x – 2) . (2x3 – x2 + 1) + (x – 2) x2(1 – 2x)

= (x – 2). [(2x3 – x2 + 1) + x2(1 – 2x)]

= (x – 2). [2x3 – x2 + 1 + x2 . 1 + x2 . (-2x)]

= (x – 2) . (2x3 – x2 + 1 + x2 – 2x3)

= (x – 2) .1

= x – 2

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
$H=(x^3-3x^2+3x-1)-(x^3+8)+3(x^2-16)$

$=x^3-3x^2+3x-1-x^3-8+3x^2-48$

$=(x^3-x^3)+(-3x^2+3x^2)+3x+(-1-8-48)$

$=3x-57=3.\frac{-1}{2}-57=\frac{-117}{2}$

11 tháng 12 2023

Cô giải bài em mới đăng với nha cô thanks cô nhiều ạ

11 tháng 9 2021

d

19 tháng 6 2019

Bài 2: 

3x + 2(5 - x) = 0

<=> 3x + 10 - 2x = 0

<=> x + 10 = 0

<=> x = 0 - 10

<=> x = -10

=> x = -10

19 tháng 6 2019

Bài 3: 

6(3q + 4q) - 8(5p - q) + (p - q)

= 6.3p + 6.4q - 8.5p - (-8).q + p - q

= 18p + 24q - 40p + 8q + p - q

= (18p - 40p + p) + (24q + 8q - q)

= -21p + 31q

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)

= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]

= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)

= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3

= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x

= -8x4 + 5x3 + 24x2 – 6x

\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)

12 tháng 8 2018

\(2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\) 

\(x-2=0\Leftrightarrow x=2\)

Ta có bảng xét dấu: 

x                             \(\frac{-1}{2}\)                      2

2x+1            -              0             +                           +

x-2               -                             -                            +

*) Nếu \(x\le\frac{-1}{2}\)ta có phương trình

\(A=\left(-2x-1\right)-\left(-x+2\right)+1\)

\(A=-2x-1+x-2+1\)

\(A=-x-2\)

*) Nếu \(\frac{-1}{2}< x\le2\)ta có phương trình

\(A=\left(2x+1\right)-\left(-x+2\right)+1\)

\(A=2x+1+x+2+1\)

\(A=3x+4\)

*) Nếu \(x>2\)ta có phương trình

\(A=\left(2x+1\right)-\left(x-2\right)+1\)

\(A=2x+1-x+2+1\)

\(A=x+4\)

Vậy \(A=\hept{\begin{cases}-x-2\left(\frac{-1}{2}\le x\right)\\3x+4\left(\frac{-1}{2}< x\le2\right)\\x+4\left(x>2\right)\end{cases}}\)