Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)
Gọi biểu thức trên là T
+)Xét \(x-3\ge0\Leftrightarrow x\ge3\)
T trở thành:\(T=3\left(x-1\right)-2\left(x-3\right)\)
\(=\left(3x-2x\right)-\left(3-6\right)\)\(=x+3\) (1)
+)Xét \(x-3< 0\Leftrightarrow x< 3\)
Khi đó: \(T=3\left(x-1\right)-2\left[-\left(x-3\right)\right]\)
\(=3\left(x-1\right)-2\left(-x+3\right)\)
\(=\left(3x+2x\right)-\left(3+6\right)=5x-9\)(2)
Từ (1) và (2) ...
2.
a) \(\left|a\right|+a\)
+ Nếu \(a>0\) thì \(\left|a\right|=a.\)
\(\Rightarrow\left|a\right|+a=a+a=2a.\)
+ Nếu \(a< 0\) thì \(\left|a\right|=-\left(a\right).\)
\(\Rightarrow\left|a\right|+a=\left(-a\right)+a=0.\)
b) \(\left|a\right|-a\)
+ Nếu \(a>0\) thì \(\left|a\right|=a.\)
\(\Rightarrow\left|a\right|-a=a-a=0.\)
+ Nếu \(a< 0\) thì \(\left|a\right|=-\left(a\right).\)
\(\Rightarrow\left|a\right|-a=\left(-a\right)-a=-2a.\)
c) \(\left|a\right|.a\)
+ Nếu \(a>0\) thì \(\left|a\right|=a.\)
\(\Rightarrow\left|a\right|.a=a.a=a^2.\)
+ Nếu \(a< 0\) thì \(\left|a\right|=-\left(a\right).\)
\(\Rightarrow\left|a\right|.a=\left(-a\right).a=-a^2.\)
d) \(\left|a\right|:a\)
+ Nếu \(a>0\) thì \(\left|a\right|=a.\)
\(\Rightarrow\left|a\right|:a=a:a=1.\)
+ Nếu \(a< 0\) thì \(\left|a\right|=-\left(a\right).\)
\(\Rightarrow\left|a\right|:a=\left(-a\right):a=-1.\)
Chúc bạn học tốt!
a) \(\left|a\right|+a\)
+) Với \(a>0\) thì \(\left|a\right|=a.\)
⇒ \(\left|a\right|+a=a+a=2a.\)
+) Với \(a< 0\) thì \(\left|a\right|=-a.\)
⇒ \(\left|a\right|+a=-a+a=0.\)
b) \(\left|a\right|-a\)
+) Với \(a>0\) thì \(\left|a\right|=a.\)
⇒ \(\left|a\right|-a=a-a=0.\)
+) Với \(a< 0\) thì \(\left|a\right|=-a.\)
⇒ \(\left|a\right|-a=-a-a=-2a.\)
d) \(\left|a\right|:a\)
+) Với \(a>0\) thì \(\left|a\right|=a.\)
⇒ \(\left|a\right|:a=a:a=1.\)
+) Với \(a< 0\) thì \(\left|a\right|=-a.\)
⇒ \(\left|a\right|:a=-a:a=-1.\)
Chúc bạn học tốt!