Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
a)=\(x^2-4-x^2+2x+3=2x-1\)
b)\(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
\(=\dfrac{3x^2-x+3-x^2+2x-1-2x^2-2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-1}{x^2+x+1}\)
\(a,A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{3+x}\right)\\ =\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}-\dfrac{x^2-1}{x^2-9}\right):\left(\dfrac{2\left(3+x\right)}{3+x}-\dfrac{x+5}{3+x}\right)\\ =\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}-\dfrac{x^2-1}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{2\left(3+x\right)-\left(x+5\right)}{3+x}\\ =\left(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{x^2-1}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{6+2x-x-5}{3+x}\)
\(=\dfrac{x^2-3x-\left(2x+6\right)-\left(x^2-1\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{3+x}\\ =\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3+x}{x+1}\\ =\dfrac{-5x-5}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3+x}{x+1}\\ =\dfrac{-5\left(x+1\right).\left(3+x\right)}{\left(x-3\right)\left(x+3\right).\left(x+1\right)}\\ =\dfrac{-5}{x-3}\)
\(b,A=x^2-x-2=0\\ \Leftrightarrow x^2+x-2x-2=0\\ \Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
\(c,\dfrac{-5}{x-3}=\dfrac{1}{2}\\ \Leftrightarrow-10=x-3\\ \Leftrightarrow-x+3=10\\ \Leftrightarrow-x=7\\ \Leftrightarrow x=7\)
Để `A=1/2` thì `x=7`
\(\dfrac{x^5+x^3+x^2+1}{x^3+x^2+x+1}=\dfrac{x^3\left(x^2+1\right)+\left(x^2+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
= \(\dfrac{\left(x^3+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}=x^2-x+1\)
\(\dfrac{x^5+x^3+x^2+1}{x^3+x^2+x+1}=\dfrac{x^3.\left(x^2+1\right)+\left(x^2+1\right)}{x.\left(x^2+1\right)+\left(x^2+1\right)}\) \(=\dfrac{\left(x^3+1\right).\left(x^2+1\right)}{\left(x+1\right).\left(x^2+1\right)}=\dfrac{x^3+1}{x+1}=\dfrac{\left(x+1\right).\left(x^2-x+1\right)}{x+1}\) \(=x^2-x+1\)
1) \(A=x^2-6x+9-2x^3+2x=-2x^3+x^2-4x+9\)
2) \(B=x^3-3x+2x^2-6-x^3+1=2x^2-3x-5\)
\(=\left(x-3\right)\left(x^2+1-x^2+1\right)\)
\(=\left(x-3\right).2\)
Học tốt
\(\left(x^2+1\right)\left(x-3\right)-\left(x-3\right)\left(x^2-1\right)\)
\(\left(x-3\right)\left(x^2+1-x^2-1\right)\)
\(\left(x-3\right)2\)