\(B=2^{2010}-2^{2009}+2^{2008}-.....+2^2-2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

\(B=2^{2010}-2^{2009}+2^{2008}-...+2^2-2\)

\(2B=2^{2011}-2^{1010}+2^{2009}-...+2^3-2^2\)

\(3A=2^{2011}-2\)

\(A=\frac{2\left(2^{2010}-1\right)}{3}\)

26 tháng 5 2018

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

26 tháng 5 2018

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

26 tháng 2 2018

\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)

\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)

\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)

Hay A > B

23 tháng 12 2018

bằng nhau bạn nhé

26 tháng 2 2018

Ta có : 

\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì : 

\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

26 tháng 2 2018

Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)

                  \(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

    \(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

   \(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)

hay A > B

Vậy A > B 

12 tháng 7 2020

ta có :B= \(\frac{2008^2+2009^2}{2009^2+2010^2}=\frac{2008^2}{2009^2+2010^2}+\frac{2009^2}{2009^2+2010^2}\)

Ta có : \(\frac{2008^2}{2009^2}>\frac{2008^2}{2009^2+2010^2}\) 

            \(\frac{2009^2}{2010^2}>\frac{2009^2}{2009^2+2010^2}\)

=> \(\frac{2008^2}{2009^2}+\frac{2009^2}{2010^2}>\frac{2008^2}{2009^2+2010^2}+\frac{2009^2}{2009^2+2010^2}=\frac{2008^2+2009^2}{2009^2+2010^2}\)

=> A>B

28 tháng 4 2017

Bài 2:b)Ta có:

D=(51*52*53*...*100):2^50.

=(51*53*55*...*99)*(52*54*56*...*100):2^50.

Khử 51*53*55*...*99 thì cần so sánh 1*3*5*...*41 với (52*54*56*...*100):2^50.

Lại có:

52*54*56*...*100:2^50=(52:2)*(54:2)*...*(100:2):(2^25)   (vì 52;54;56;...;100 có 25 thừa số.

=26*27*28*...*50:2^25.

=(27*29*31*...*49)*(26*28*30*...*50):2^25

Khử với 1*3*5*...*49 thì cần so sánh 1*3*5*...*25 với (26*28*30*...*50):2^25.

Lại có:

26*28*30*...*50:2^25=(26:2)*(28:2)*(30:2)*...*(50:2):2^12(vì 26;28;30;...;50 có 13 thừa số).

=13*14*15*...*25:2^12.

=(13*15*17*19*21*23*25)*(14*16*18*20*22*24):2^12.

Khử với 1*3*5*...*25 thì cần so sánh 1*3*5*7*9*11 với (14*16*18*20*22*24):2^12.

Giờ số nhỏ rồi bấm máy tính so sánh là được.\

=>C=D.

Vậy C=D.

mấy câu kia dễ rồi tự l;àm nha mk nhắc câu khó thôi.

tk cho mk nha các bn.

-chúc ai tk mk học giỏi-

28 tháng 4 2017

1/

a, x + (x+1) + (x+2) +...+ (x+100) = 2029099

(x+x+x+...+x) + (1+2+...+100) = 2029099

2011x + 2021055 = 2029099

2011x = 2029099 - 2021055 

2011x = 8044

x = 8044 : 2011

x = 4

b, 2+4+6+....+2x = 210

=> 2(1+2+3+...+x) = 210

=> \(\frac{2x\left(x+1\right)}{2}=210\)

=> x(x+1) = 14.15

=> x = 14

2/

a, Vì B < 1

\(\Rightarrow B< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}\)= A

Vậy A > B

b, Ta có:

\(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}=\frac{51.52.53....100}{2^{50}}\)

\(=\frac{\left(51.52.53....100\right)\left(1.2.3.4....50\right)}{2^{50}.\left(1.2.3.4....50\right)}\)

\(=\frac{1.2.3.4.5.6.....100}{\left(2.1\right)\left(2.2\right).\left(2.3\right).....\left(2.50\right)}\)

\(=\frac{1.2.3.4.5.6......100}{2.4.6........100}=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6....100}\)

\(=1.3.5....99=C\)

Vậy C = D

9 tháng 5 2018

a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)

=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)

=2.5

=10

17 tháng 3 2018

2, ta thấy:

\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)

\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)

từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)

29 tháng 8 2020

a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}< 1\)

QT
Quoc Tran Anh Le
Giáo viên
7 tháng 7 2019

\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(M=2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\)

\(M=2^{2009}\left(2-1\right)-2^{2008}-...-2^1-2^0\)

\(M=2^{2009}-2^{2008}-2^{2007}-...-2^1-2^0\)

\(M=2^{2008}\left(2-1\right)-2^{2007}-...-2^1-2^0\)

\(M=2^{2008}-2^{2007}-2^{2006}-...-2^1-2^0\)

...........................................

\(M=2^1-2^0=2-1=1\)

7 tháng 7 2019

đặt M1 = 22009 + 22008 +...+21 + 20

⇒ 2M1 = 22010 + 22009 + ... + 22 + 21

⇒ 2M1 - M1 = 22010 + 22009 + ... + 22 + 21 - (22009 + 22008 + ... + 21 + 20)

⇒ M1 = 22010 - 20

⇒ M = 22010 - (22010 - 20)

⇒ M = 22010 - 22010 +20

⇒ M = 0 + 1 = 1

Vậy M = 1