Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. ĐKXĐ : x lớn hơn hoặc bằng 1/2
b. A\(\sqrt{2}\)= \(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
= \(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
= \(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)
\(\Rightarrow A=2\)
Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)
Do đó : A= \(\sqrt{4x-2}\)
Vậy ............
2.
a. \(x\ge2\)hoặc x<0
b. A= \(2\sqrt{x^2-2x}\)
c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)
\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)
Vậy...........
ĐK \(x>0;x\ne1\)
\(A=\)như trên
\(\Rightarrow A=\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)
= \(\sqrt{x}-1\)
a) đk: \(x\ge0;x\ne\left\{\frac{1}{4};1\right\}\)
\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\left[\frac{\left(2x+\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{x-1}\right]\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\frac{\left(x-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}\)
b) Ta có:
\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)-1}{x+\sqrt{x}+1}=1-\frac{1}{x+\sqrt{x}+1}\)
Mà \(x+\sqrt{x}\ge0\left(\forall x\right)\)
\(\Leftrightarrow x+\sqrt{x}+1\ge1\left(\forall x\right)\)
\(\Leftrightarrow\frac{1}{x+\sqrt{x}+1}\le1\left(\forall x\right)\)
\(\Leftrightarrow P=1-\frac{1}{x+\sqrt{x}+1}\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x+\sqrt{x}=0\Leftrightarrow x=0\)
Vậy Min(P) = 0 khi x = 0
Điều kiện : x > 1/2
\(A\sqrt{2}=\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
\(A\sqrt{2}=\sqrt{\left(2x-1\right)+2\sqrt{2x-1}.1+1}-\sqrt{\left(2x-1\right)-2\sqrt{2x-1}.1+1}\)
\(A\sqrt{2}=\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(A\sqrt{2}=\left(\sqrt{2x-1}+1\right)-\left|\sqrt{2x-1}-1\right|\)
+) Nếu \(\sqrt{2x-1}\ge1\) => 2x - 1 > 1 => x > 1 thì \(A\sqrt{2}=\sqrt{2x-1}+1-\sqrt{2x-1}+1=2\)
=> \(A=\sqrt{2}\)
+) Nếu \(\sqrt{2x-1}<1\) => x < 1 thì \(A\sqrt{2}=\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\sqrt{2x-1}\)
=> \(A=\sqrt{2}.\sqrt{2x-1}\)
Vậy với x > 1 thì \(A=\sqrt{2}\)
với 1/2 < x < 1 thì \(A=\sqrt{2}.\sqrt{2x-1}\)
a)\(x+3+\sqrt{x^2-6x+9}\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+x-3\)
\(=2x\)
b)\(\sqrt{x^2+4x+4}-\sqrt{x^2}\)
\(=\sqrt{\left(x+2\right)^2}-x\)
\(=x+2-x\)
=2
c)\(\sqrt{\frac{x^2-2x+1}{x-1}}\)
\(=\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)
\(=\sqrt{x-1}\)
\(A=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2+2x}}\)
\(=\frac{\left(x+\sqrt{x^2-2x}\right)^2-\left(x-\sqrt{x^2-2x}\right)^2}{x^2-\left(\sqrt{x^2-2x}\right)^2}\)
\(=\frac{x^2+x^2-2x+2x\sqrt{x^2-2x}-\left(x^2+x^2-2x-2x\sqrt{x^2-2x}\right)}{x^2-\left(x^2-2x\right)}\)
\(=\frac{2x^2-2x-2x^2+2x+2x\sqrt{x^2-2x}+2x\sqrt{x^2-2x}}{2x}\)
\(=\frac{4x\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)