\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{x-2-2\sqrt{2}.\sqrt{x-2}+2}=\text{| }\sqrt{x-2}+\sqrt{2}\text{| }+\text{| }\sqrt{x-2}-\sqrt{2}\text{| }\) +) \(A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\left(\text{ }\sqrt{x-2}\text{≥}\sqrt{2}\right)\)

+) \(A=\sqrt{x-2}+\sqrt{2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\left(\sqrt{x-2}< \sqrt{2}\right)\)

15 tháng 7 2018

Ta có \(A\sqrt{2}=\sqrt{2x+4\sqrt{2x-4}}+\sqrt{2x-4\sqrt{2x-4}}=\sqrt{2x-4+4\sqrt{2x-4}+4}\)

+\(\sqrt{2x-4-4\sqrt{2x-4}+4}=\sqrt{2x-4}+2+\sqrt{2x-4}-2=2\sqrt{2x-4}\)

=> A=\(2\sqrt{x-2}\)

15 tháng 7 2018

A = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(\sqrt{2}A=\sqrt{2}\left(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\right)\)

\(\sqrt{2}A=\sqrt{2\left(x+2\sqrt{2x-4}\right)}+\sqrt{2\left(x-2\sqrt{2x-4}\right)}\)

\(\sqrt{2}A=\sqrt{2x+4\sqrt{2x-4}}+\sqrt{2x-4\sqrt{2x-4}}\)

\(\sqrt{2}A=\sqrt{\left(2x-4\right)+2.2\sqrt{2x-4}+4}+\sqrt{\left(2x-4\right)-2.2\sqrt{2x-4}+4}\)

\(\sqrt{2}A=\sqrt{\left(\sqrt{2x-4}+2\right)^2}+\sqrt{\left(\sqrt{2x-4}-2\right)^2}\)

\(\sqrt{2}A=|\sqrt{2x-4}+2|+|\sqrt{2x-4}+2|\)

\(\sqrt{2}A=\sqrt{2x-4}+2+|\sqrt{2x-4}-2|\)

Xét 2 trường hợp:

+)\(\sqrt{2x-4}\ge2\)

\(\sqrt{2}A=\sqrt{2x-4}+2+\sqrt{2x-4}-2\)

\(\sqrt{2}A=2\sqrt{2x-4}\)

\(A=\sqrt{2}\sqrt{2x-4}=\sqrt{4x-8}\)

+)\(\sqrt{2x-4}< 2\)

\(\sqrt{2}A=\sqrt{2x-4}+2+2-\sqrt{2x-4}=4\)

Vậy...

( Bạn có thể bình phương lên cũng đc)

16 tháng 8 2020

lm trên symbolab.com (thêm simplify là ra)

16 tháng 8 2020

\(\sqrt{2x-2\sqrt{x^2-4}}+\sqrt{x-2}=\sqrt{\left(\sqrt{x-2}-\sqrt{x+2}\right)^2}+\sqrt{x-2}\)

\(=\left|\sqrt{x-2}-\sqrt{x+2}\right|+\sqrt{x-2}\)

\(=-\sqrt{x-2}+\sqrt{x+2}+\sqrt{x-2}\)

\(=\sqrt{x+2}\)

1 tháng 11 2017

P=\(1+2\sqrt{x}\).

Q=x-1.

15 tháng 11 2018

1, ĐKXĐ: x\(\ge0\);x\(\ne1\)

Rút gọn P với \(x\ge0;x\ne1\)ta có

P=\(\dfrac{-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\sqrt{x}+0,5}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)}{x-\sqrt{x}+1}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-x\sqrt{x}+x-\sqrt{x}+0,5x-0,5\sqrt{x}+0,5+x\sqrt{x}-x-0,5x+0,5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

=\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

15 tháng 11 2018

2, Thay x=7-4\(\sqrt{3}\)thỏa mãn đk vào P ta có:

P\(=\dfrac{7-4\sqrt{3}-\sqrt{7-4\sqrt{3}}+1}{\sqrt{7-4\sqrt{3}}}\)

=\(\dfrac{7-4\sqrt{3}-\sqrt{\left(\sqrt{3}-2\right)^2}+1}{\sqrt{\left(\sqrt{3}-2\right)^2}}\)

=\(\dfrac{7-4\sqrt{3}-2+\sqrt{3}+1}{2-\sqrt{3}}\)

\(=\dfrac{6-3\sqrt{3}}{2-\sqrt{3}}=12+6\sqrt{3}-6\sqrt{3}-9\)=3

29 tháng 7 2016

a) \(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+x-3=2x\)

b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}=x+2-x=2\)

c) \(\sqrt{\frac{x^2-2x+1}{x-1}}=\sqrt{\frac{\left(x-1\right)^2}{x-1}}=\sqrt{x-1}\)

(Nhớ k cho mình với nhá!)

29 tháng 7 2016

a) \(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+\left|x-3\right|\Leftrightarrow\orbr{\begin{cases}x+3+x-3=2x\left(x\ge0\right)\\x+3+3-x=9\left(x< 0\right)\end{cases}}\)

c) \(\sqrt{\frac{x^2-2x+1}{x-1}}=\sqrt{\frac{\left(x-1\right)^2}{x-1}}=\sqrt{x-1}\)

Ta có: \(\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)

\(=\frac{2\left(x+1\right)}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}\)

\(=\frac{2\left(x+1\right)}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

8 tháng 9 2020

cảm ơn bạn

31 tháng 10 2018

\(a,\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)

\(=\left(5\sqrt{2}+4\sqrt{3}-6\sqrt{2}\right)2\sqrt{3}\)

\(=\left(4\sqrt{3}-\sqrt{2}\right)2\sqrt{3}\)

\(=24-2\sqrt{6}\)

19 tháng 6 2015

\(P=\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{\left(x-\sqrt{x}+1\right)}+1-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1\)

\(P=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)

28 tháng 10 2016

Bạn xem lại đề nhé là \(\sqrt{x-1}\)hay \(\sqrt{x}-1\)

28 tháng 10 2016

\(\sqrt{x}-1\) mik nhầm đề