Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(Q=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(1+\sqrt{2})(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
\(=\dfrac{a\sqrt{a}-3-2\left(a-6\sqrt{a}+9\right)-a-4\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{a-1}{a+8}\)
\(=\dfrac{a\sqrt{a}-a-4\sqrt{a}-6-2a+12\sqrt{a}-18}{\left(\sqrt{a}-3\right)}\cdot\dfrac{\sqrt{a}-1}{a+8}\)
\(=\dfrac{a\sqrt{a}-3a+8\sqrt{a}-24}{\left(\sqrt{a}-3\right)}\cdot\dfrac{\sqrt{a}-1}{a+8}=\sqrt{a}-1\)
\(A=\left(\dfrac{6x+4}{3\sqrt{3x^3}-8}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\dfrac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
Điều kiện tự làm nha:
Đặt \(\sqrt{3x}=a\) thì ta có:
\(A=\left(\dfrac{2a^2+4}{a^3-8}-\dfrac{a}{a^2+2a+4}\right).\left(\dfrac{1+a^3}{1+a}-a\right)\)
\(=\left(\dfrac{2a^2+4}{\left(a-2\right)\left(a^2+2a+4\right)}-\dfrac{a}{a^2+2a+4}\right).\left(\dfrac{\left(1+a\right)\left(1-a+a^2\right)}{1+a}-a\right)\)
\(=\dfrac{a^2+2a+4}{\left(a-2\right)\left(a^2+2a+4\right)}.\left(1-2a+a^2\right)\)
\(=\dfrac{\left(a-1\right)^2}{a-2}=\dfrac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)
\(A=\left(\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right)\left(ĐK:x\ge0;\ne1\right)\)
\(=\left[\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}+2}\right]\)
\(=\frac{3\left(\sqrt{x}+1\right)-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)
\(=\frac{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}=\frac{2\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\)
Lời giải:
\(N=\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}\)
\(=\sqrt{2\sqrt{24}+4(2\sqrt{3}+\sqrt{2})+18}\)
\(=\sqrt{12+2\sqrt{24}+2+4(\sqrt{12}+\sqrt{2})+4}\)
\(=\sqrt{(\sqrt{12}+\sqrt{2})^2+4(\sqrt{12}+\sqrt{2})+4}\)
\(=\sqrt{(\sqrt{12}+\sqrt{2}+2)^2}=\sqrt{12}+\sqrt{2}+2=2\sqrt{3}+\sqrt{2}+2\)
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}< =0\)
Do đó: A<=2/3
\(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(A^2=\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)^2\)
\(A^2=2-\sqrt{3}+2+\sqrt{3}+2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(A^2=4+2\sqrt{4-3}\)
\(A^2=6\)
Vì \(A>0\)\(\Rightarrow A=\sqrt{6}\)
\(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\\ A=\frac{\sqrt{2}\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\\ A=\frac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\\ A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\\ A=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}\\ A=\frac{2\sqrt{3}}{\sqrt{2}}\\ A=\sqrt{6}\)