Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(K=\frac{2^{11}\cdot9^2}{3^5\cdot16^2}=\frac{2^{11}\cdot3^4}{3^5\cdot2^8}=\frac{2^3}{3}=\frac{8}{3}\)
b) \(N=\frac{9^3\cdot27^2}{6^2\cdot3^{10}}=\frac{3^6\cdot3^6}{2^2\cdot3^2\cdot3^{10}}=\frac{1}{4}\)
c) \(P=\frac{27^{15}\cdot5^3\cdot8^4}{25^2\cdot81^{11}\cdot2^{11}}=\frac{3^{45}\cdot5^3\cdot2^{12}}{5^4\cdot3^{44}\cdot2^{11}}=\frac{3\cdot2}{5}=\frac{6}{5}\)
a) \(\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.3^4}{3^5.2^8}=\frac{2^3}{3}=\frac{8}{3}\)
a) \(K=\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.3^4}{2^8.3^5}=\frac{2^3}{3}=\frac{8}{3}\)
b) \(N=\frac{9^3.27^2}{6^2.3^{10}}=\frac{3^6.3^6}{3^2.2^2.3^{10}}=\frac{1}{2^2}=\frac{1}{4}\)
c) \(P=\frac{27^{15}.5^3.8^4}{25^2.81^{11}.2^{11}}=\frac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\frac{2.3}{5}=\frac{6}{5}\)
\(A=\dfrac{\left(-3\right)^{45}\cdot5^3\cdot2^{12}}{5^4\cdot3^{44}\cdot\left(-2\right)^{11}}=\dfrac{\left(-3\right)^{45}\cdot\left(-2\right)^{12}}{5\cdot\left(-3\right)^{44}\cdot\left(-2\right)^{11}}=\dfrac{\left(-3\right)\cdot\left(-2\right)}{5}=\dfrac{6}{5}\)
A = \(\frac{1}{2}-\frac{3}{4}+\frac{5}{6}-\frac{7}{12}\)
A = \(\left(-\frac{1}{4}\right)+\frac{5}{6}-\frac{7}{12}\)
A = \(\frac{7}{12}-\frac{7}{12}\)
A = \(0\).
Mình làm câu A thôi nhé.
Chúc bạn học tốt!
\(a,\) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{2^{12}.3^{10}+\left(2.3\right)^9.2^3.3.5}{2^{12}.3^{12}-\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{\left(2^{12}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(=\frac{\left(2^{12}.3^{10}\right).6}{\left(2^{11}.3^{11}\right).5}\)
\(=\frac{2.6}{3.5}\)
\(=\frac{2.2}{5}\)
\(=\frac{4}{5}\)
\(b,\) \(\frac{2^{15}.9^4}{6^3.8^3}\)
\(=\frac{2^{15}.3^8}{2^3.3^3.2^9}\)
\(=\frac{2^{15}.3^8}{2^{12}.3^3}\)
\(=2^3.3^5\)
\(=8.243\)
\(=1944\)
Chúc bạn học tốt ^^
a) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+6^9.120}{\left(2^3\right)^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+6^9.120}{2^{12}.3^{12}-6^{11}}=\frac{6^{10}.4+6^{10}.20}{6^{12}-6^{11}}=\frac{6^{10}.\left(4+20\right)}{6^{11}.\left(6-1\right)}=\frac{6^{11}.4}{6^{11}.5}=\frac{4}{5}\)
b) \(\frac{2^{15}.9^4}{6^3.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}=\frac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5=1944\)
c) \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(4.2\right)^{10}+4^{10}}{\left(2^3\right)^4+4^6.4^5}=\frac{4^{10}.2^{10}+4^{10}}{2^{12}+4^6.4^5}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.2^{10}}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(1+2^{10}\right)}=\frac{4^{10}}{4^6}=4^4=256\)
a) \(k=\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.\left(3^2\right)^2}{3^5.\left(2^4\right)^2}=\frac{2^{11}.3^4}{3^5.2^8}=\frac{8.1}{3.1}=\frac{8}{3}\)
b) \(N=\frac{9^3.27^2}{6^2.3^{10}}=\frac{\left(3^2\right)^3.\left(3^3\right)^2}{\left(2.3\right)^2.3^{10}}=\frac{3^6.3^6}{2^2.3^2.3^{10}}=\frac{3^{12}}{4.3^{12}}=\frac{1}{4}\)