\(\frac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

\(=\frac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}-\sqrt{3}\right)}\)

\(=\frac{\sqrt{5}}{2}\)

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

24 tháng 11 2019

\(a,A=\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)

\(=\sqrt{\left(\sqrt{5}^2+2\sqrt{5}+2\sqrt{2}\cdot\sqrt{5}\right)+\sqrt{2}^2+2\sqrt{2}\cdot1+1^2}\)

\(=\sqrt{\sqrt{5}^2+2\cdot\sqrt{5}\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)^2}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{2}+1\right)^2}\)

\(=\sqrt{5}+\sqrt{2}+1\)

\(b,B=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\frac{3\cdot\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}{\sqrt{6}+1}+\frac{2\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}{\sqrt{6}-2}-\frac{4\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left[3\cdot\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}+11\right)\left(\sqrt{6}-11\right)=-115\)

21 tháng 9 2020

\(A=\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}\)

\(A^2=\left(7+2\sqrt{10}+7-2\sqrt{10}\right)+2\sqrt{\left(7-2\sqrt{10}\right)\left(7+2\sqrt{10}\right)}\)

\(=14+2\sqrt{49-40}=14+6=20\)

Khi đó:\(A=\sqrt{20}\)

Các câu còn lại bạn làm nốt nhé

14 tháng 8 2016

Bài 1:

a) cứ kiểu bị sai đề

b) \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{y}+\sqrt{x}\right)}=\frac{\sqrt{x}}{\sqrt{y}}\)

c) \(\sqrt{a^2\left(a-2\right)^2}=a\left(a-2\right)\)

Bài 2:

a)\(\sqrt{19x}=15\left(ĐK:x\ge0\right)\)

\(\Leftrightarrow19x=225\)

\(\Leftrightarrow x=\frac{225}{19}\)

b)\(\sqrt{4x^2}=8\)

\(\Leftrightarrow\left|2x\right|=8\)          (1)

+)TH1: \(x\ge0\) thì pt(1) trở thành

\(\Leftrightarrow2x=8\Leftrightarrow x=4\) (ym)

+)TH2: \(x\le0\)  thì pt(1) trở thành

\(\Leftrightarrow-2x=8\Leftrightarrow x=-4\) (tm) 

Vậy x={-4;4}

c) \(\sqrt{4\left(x+1\right)}=\sqrt{8}\left(ĐK:x\ge-1\right)\)

\(\Leftrightarrow4\left(x+1\right)=8\)

\(\Leftrightarrow x+1=2\Leftrightarrow x=1\)

d) \(\sqrt{9\left(2-3x\right)^2}=6\)

\(\Leftrightarrow\left|3\left(2-3x\right)\right|=6\)                          

+)TH1:\(3\left(2-3x\right)\ge0\Leftrightarrow2-3x\ge0\Leftrightarrow-3x\ge-2\Leftrightarrow x\le\frac{2}{3}\)   thì pt (2) trở thành

\(3\left(2-3x\right)=6\)

\(\Leftrightarrow2-3x=2\)

\(\Leftrightarrow x=0\)

\(\Leftrightarrow x=0\)  (TM)

+)Th2:\(3\left(2-3x\right)\le0\Leftrightarrow2-3x\le0\Leftrightarrow x\ge\frac{2}{3}\)  thì pt(2) trở thành

\(-3\left(2-3x\right)=6\)

\(\Leftrightarrow2-3x=-2\)

\(\Leftrightarrow-3x=-4\)

\(\Leftrightarrow x=\frac{4}{3}\) (tm)

Vậy \(x=\left\{0;\frac{4}{3}\right\}\)

 

24 tháng 7 2016

2) \(A=\sqrt{15a^2-8a\sqrt{15}+16}\\ =\sqrt{\left(a\sqrt{15}-4\right)^2}\)

b) Khi a=\(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\)  thì 

     \(A=\sqrt{\left[\left(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\right)\sqrt{15}-4\right]^2}\)

         \(=\sqrt{\left[\left(3+5\right)-4\right]^2}\)

        \(=\sqrt{4^2}\)

         \(=4\)