Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)
\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)
dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)
\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)
\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)
\(a^3+6=-3a-2a^2\)
\(\Rightarrow a^3+6+3a+2a^2=0\)
\(\Rightarrow a\left(a^2+3\right)+2\left(a^2+3\right)=0\)
\(\Rightarrow\left(a+2\right)\left(a^2+3\right)=0\)
Vì \(a^2+3>0\forall a\in R\) nên \(a+2=0\Leftrightarrow a=-2\)
\(A=\dfrac{a-1}{a+3}=\dfrac{-2-1}{-2+3}=\dfrac{-3}{1}=-3\)
\(A=\left[\dfrac{a^2-2a+4}{a-2}:\left(a^3+8\right)+\dfrac{a-2}{a^3+8}\cdot\dfrac{a^2-2a+4}{a^2-4}\right]\cdot\left(a^2-4\right)\)
\(=\left[\dfrac{a^2-2a+4}{a-2}\cdot\dfrac{1}{\left(a+2\right)\left(a^2-2a+4\right)}+\dfrac{a-2}{\left(a+2\right)\left(a^2-2a+4\right)}\cdot\dfrac{a^2-2a+4}{a^2-4}\right]\cdot\left(a^2-4\right)\)
\(=\left(\dfrac{1}{\left(a+2\right)\left(a-2\right)}+\dfrac{1}{\left(a+2\right)^2}\right)\cdot\left(a^2-4\right)\)
\(=\dfrac{a+2+a-2}{\left(a+2\right)^2\cdot\left(a-2\right)}\cdot\dfrac{\left(a+2\right)^2\cdot\left(a-2\right)^2}{1}\)
\(=2a\left(a-2\right)\)
Để A là số nguyên thì \(\left\{{}\begin{matrix}a\in Z\\a\notin\left\{2;-2\right\}\end{matrix}\right.\)
ta có : \(x+3+\dfrac{4-3a^2}{a^2-9}=\dfrac{5}{2a^2+6a}\)
\(\Leftrightarrow x+3=\dfrac{5}{2a^2+6a}-\dfrac{4-3a^2}{a^2-9}\)
\(\Leftrightarrow x+3=\dfrac{5}{2a\left(a+3\right)}-\dfrac{4-3a^2}{\left(a+3\right)\left(a-3\right)}\) \(\Leftrightarrow x+3=\dfrac{5\left(a-3\right)-2a\left(4-3a^2\right)}{2a\left(a+3\right)\left(a-3\right)}\) \(\Leftrightarrow x+3=\dfrac{5a-15-8a+6a^3}{2a\left(a+3\right)\left(a-3\right)}=\dfrac{6a^3-3a-15}{2a\left(a+3\right)\left(a-3\right)}\)\(\Leftrightarrow x=\dfrac{6a^3-3a-15}{2a\left(a+3\right)\left(a-3\right)}-3=\dfrac{6a^3-3a-15-3.2a\left(a^2-9\right)}{2a\left(a+3\right)\left(a-3\right)}\)
\(\Leftrightarrow x=\dfrac{6a^3-3a-15-6a^3+54a}{2a\left(a+3\right)\left(a-3\right)}=\dfrac{51a-15}{2a\left(a^2-9\right)}\)
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)
\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)
c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)
Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)
\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)
Sửa đề :
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\)
Bài làm
đề có sai chỗ nào ko bn,mk thấy chỗ giả thiết sai sai thì phải,bn kt lại giúp mk
\(\left(\dfrac{a-3}{a}-\dfrac{a}{a-3}+\dfrac{9}{a^2-3a}\right):\dfrac{2a+2}{a}=\left(\dfrac{a-3}{a}-\dfrac{a}{a-3}+\dfrac{9}{a\left(a-3\right)}\right):\dfrac{2a+2}{a}=\left(\dfrac{a^2-6a+9}{a\left(a-3\right)}-\dfrac{a^2}{a\left(a-3\right)}+\dfrac{9}{a\left(a-3\right)}\right):\dfrac{2a+2}{a}=\left(\dfrac{a^2-6a+9-a^2+9}{a\left(a-3\right)}\right):\dfrac{2a+2}{a}=\dfrac{18-6a}{a\left(a-3\right)}:\dfrac{2a+2}{a}=\dfrac{6a-18}{\left(-a\right)\left(3-a\right)}:\dfrac{2a+2}{a}=\dfrac{6}{\left(-a\right)}:\dfrac{2a+2}{a}=\dfrac{6a}{\left(-2a^2\right)+\left(-2a\right)}.DKXD:a\ne0;a\ne3\)
thanks bạn