\(\frac{3\pi}{2}-a\)) - sin(\(\frac{3\pi}{2}-a\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 6 2020

\(A=cos\left(\pi+\frac{\pi}{2}-a\right)-sin\left(\pi+\frac{\pi}{2}-a\right)+cos\left(a+\frac{\pi}{2}-4\pi\right)-sin\left(a+\frac{\pi}{2}-4\pi\right)\)

\(=-cos\left(\frac{\pi}{2}-a\right)+sin\left(\frac{\pi}{2}-a\right)+cos\left(a+\frac{\pi}{2}\right)-sin\left(a+\frac{\pi}{2}\right)\)

\(=-sina+cosa-sina-cosa=-2sina\)

9 tháng 5 2016

a) P = cos(\(\frac{\Pi}{2}\) + x) + cos(2π - x) + cos(3π + x)   = -sinx + cosx - cosx = -sinx

11 tháng 5 2020

Nhìn đề bài hãi quá :(

a/ \(A=3\sin\left(5.2\pi+\pi-x\right).\sin\left(2\pi+\frac{\pi}{2}-x\right)+2\sin\left(4.2\pi+\pi+x\right)\)

\(A=3\sin\left(\pi-x\right).\sin\left(\frac{\pi}{2}-x\right)+2\sin\left(\pi+x\right)\)

\(A=3\sin x.\cos x-2\sin x=\sin x\left(3\cos x-2\right)\)

b/ \(B=\sin\left(5.2.180^0+180^0+x\right)-\cos\left(90^0-x\right)+\tan\left(90^0+180^0-x\right)+\cot\left(2.180^0-x\right)\)

\(B=\sin\left(180^0+x\right)-\sin x+\tan\left(90^0-x\right)+\cot\left(-x\right)\)

\(B=-\sin x-\sin x+\cot x-\cot x=-2\sin x\)

c/ \(C=-2\sin\left(-(2\pi+\frac{\pi}{2}-x)\right)-3\cos\left(2\pi+\pi-x\right)+5\sin\left(2.2\pi-\left(\frac{\pi}{2}+x\right)\right)+\cot\left(\pi+\frac{\pi}{2}-x\right)\)

\(C=2\sin\left(\frac{\pi}{2}-x\right)-3\cos\left(\pi-x\right)-5\sin\left(\frac{\pi}{2}+x\right)+\cot\left(\frac{\pi}{2}-x\right)\)

\(2\cos x+3\cos x-5\cos x+\tan x=\tan x\)

11 tháng 5 2020

d/ \(D=\tan\left(-\left(\pi-x\right)\right).\cos\left(-\left(\frac{\pi}{2}-x\right)\right).\left(-\cos x\right)\)

\(D=\tan\left(\pi-x\right).\cos\left(\frac{\pi}{2}-x\right).\cos x\)

\(D=-\tan x.\sin x.\cos x=-\sin^2x\)

e/ \(E=\cos\left(28.2\pi+\pi+\frac{\pi}{2}-x\right)+\sin\left(-\left(58.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\cos\left(-\left(46.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\sin\left(35.2\pi+\pi+\frac{\pi}{2}-x\right)\)

\(E=-\cos\left(\frac{\pi}{2}-x\right)+\sin\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)\)

\(E=-2\sin x\)

Thôi, stop ở đây, làm nữa chắc tẩu hỏa nhập ma quá :(

Mình thấy hầu hết các bài này đều có chung 1 điểm, và chắc đó cũng là điểm mà bạn thắc mắc: Đó chính là tách các hạng tử ra và biến đổi

Tách cũng đơn giản thôi, cứ gặp sin, cos thì tách sao cho về dạng 2pi+..., gặp tan, cot thì pi.

Còn tách mấy cái phân số như vầy:

Ví dụ \(\frac{7\pi}{2}\) , 7 chia 2 được 3, ta lấy \(\frac{7}{2}-3=\frac{1}{2}\) thì suy ra: \(\frac{7\pi}{2}=3\pi+\frac{\pi}{2}\)

Đó, thế là được :D

NV
19 tháng 6 2020

\(sina.sin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)\)

\(=-\frac{1}{2}sina\left[cos\frac{2\pi}{3}-cos2a\right]=-\frac{1}{2}sina\left(-\frac{1}{2}-cos2a\right)\)

\(=\frac{1}{4}sina+\frac{1}{2}sina.cos2a=\frac{1}{4}sina+\frac{1}{4}sin3a-\frac{1}{4}sina\)

\(=\frac{1}{4}sin3a\)

\(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}=sin\frac{\pi}{9}sin\left(\frac{\pi}{3}-\frac{\pi}{9}\right)sin\left(\frac{\pi}{3}+\frac{\pi}{9}\right)=\frac{1}{4}sin\frac{\pi}{3}=\frac{\sqrt{3}}{8}\)

\(cosa.cos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{2}cosa\left(cos\frac{2\pi}{3}+cos2a\right)\)

\(=\frac{1}{2}cosa\left(cos2a-\frac{1}{2}\right)=\frac{1}{2}cosa.cos2a-\frac{1}{4}cosa\)

\(=\frac{1}{4}cos3a+\frac{1}{4}cosa-\frac{1}{4}cosa=\frac{1}{4}cos3a\)

\(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}=cos\frac{\pi}{18}.cos\left(\frac{\pi}{3}-\frac{\pi}{18}\right).cos\left(\frac{\pi}{3}+\frac{\pi}{18}\right)=\frac{1}{4}cos\frac{\pi}{6}=\frac{\sqrt{3}}{8}\)

NV
12 tháng 6 2019

Câu 4:

Đặt \(x=sina+cosa>0\Rightarrow x^2=\left(sina+cosa\right)^2\)

\(\Rightarrow x^2=sin^2a+cos^2a+2sina.cosa=1+2.\frac{12}{25}=\frac{49}{25}\)

\(\Rightarrow x=\sqrt{\frac{49}{25}}=\frac{7}{5}\)

\(\Rightarrow P=\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)\)

\(P=\frac{7}{5}\left(1-\frac{12}{25}\right)=\frac{91}{125}\)

Câu 5:

\(sina+cosa=m\Rightarrow\left(sina+cosa\right)^2=m^2\)

\(\Leftrightarrow sin^2a+cos^2a+2sina.cosa=m^2\)

\(\Leftrightarrow1+2sina.cosa=m^2\)

\(\Rightarrow2sina.cosa=m^2-1\)

\(P=\left|sina-cosa\right|\ge0\)

\(\Leftrightarrow P^2=\left(sina-cosa\right)^2=sin^2a+cos^2a-2sina.cosa\)

\(\Leftrightarrow P^2=1-2sina.cosa=1-\left(m^2-1\right)=2-m^2\)

\(\Rightarrow P=\sqrt{2-m^2}\)

NV
12 tháng 6 2019

Câu 1:

Do \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)

\(sin\left(\pi+a\right)=-sina\Rightarrow-sina=-\frac{1}{3}\Rightarrow sina=\frac{1}{3}\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=\frac{-2\sqrt{2}}{3}\)

\(P=tan\left(\frac{7\pi}{2}-a\right)=tan\left(3\pi+\frac{\pi}{2}-a\right)=tan\left(\frac{\pi}{2}-a\right)=cota\)

\(\Rightarrow P=\frac{cosa}{sina}=-2\sqrt{2}\)

Câu 2:

\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=\frac{tana+1}{1-tana}\)

\(\Rightarrow\frac{tana+1}{1-tana}=1\Rightarrow tana+1=1-tana\Rightarrow tana=0\)

\(\Rightarrow\frac{sina}{cosa}=0\Rightarrow sina=0\)

Do \(\frac{\pi}{2}< a< 2\pi\Rightarrow-1\le cosa< 1\)

\(cos^2a=1-sin^2a=1-0=1\Rightarrow\left[{}\begin{matrix}cosa=-1\\cosa=1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow P=cos\left(a-\frac{\pi}{6}\right)+sina=cosa.cos\frac{\pi}{6}+sina.sin\frac{\pi}{6}+sina\)

\(P=-1.\frac{\sqrt{3}}{2}+0.\frac{1}{3}+0=-\frac{\sqrt{3}}{2}\)

NV
17 tháng 4 2019

\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)

\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)

\(A=0\)

\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)

\(B=\frac{1}{4}\)

\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)

\(C=\frac{3}{2}\)

\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)

\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)

\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)

\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)

30 tháng 4 2019

Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là

NV
7 tháng 6 2020

\(a\in\left(\frac{\pi}{2};\pi\right)\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)

\(A=\frac{sin\left(4\pi-\frac{\pi}{2}-a\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-sin\left(a+\frac{\pi}{2}\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-cosa}{sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}-cosa}\)

\(=\frac{-\frac{4}{5}}{\frac{3}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}}=...\)

8 tháng 6 2020

Hình như câu 2 b, chỗ cos phải là -0,8 chứ nhỉ

8 tháng 6 2020

vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-