K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2015

=(b+c)(ac-a2+bc-ab)+(b+c)(ac-bc+a2-ab)+(c+a)(a+b)(b-c)

=(b+c)(ac-a2+bc-ab+ac-bc+a2-ab)+(a+c)(a+b)(b-c)

=(b+c)(2ac-2ab)-(a+c)(a+b)(c-b)

=(b+c).2a.(c-b)-(a2+ab+ac+bc)(c-b)

=(c-b)(2ab+2ac-a2-ab-ac-bc)

=(c-b)(-a2+ab+ac-bc)=(c-b)[a(b-a)-c(b-a)]

=(c-b)(b-a)(a-c)

15 tháng 6 2019

\(\left(a+c\right)\left(a-c\right)-\left(a-b-c\right)\left(a-b+c\right)+b\left(b-2a\right)\)

\(=a^2-c^2-\left(a-b\right)^2+c^2+b^2-2ab\)

\(=a^2-c^2-a^2+2ab-b^2+c^2+b^2-2ab\)

\(=0\)

15 tháng 6 2019

\(=\left(a^2-c^2\right)-\left(\left(a-b\right)^2-c^2\right)+b^2-2ab\)

\(=a^2-c^2-\left(a-b\right)^2+c^2+b^2-2ab\)

\(=\left(a^2-2ab+b^2\right)-\left(a-b\right)^2\)

\(=\left(a-b\right)^2-\left(a-b\right)^2=0\)

3 tháng 8 2016

\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Đặt a+b=x ; b+c=y; c+a=z ta có:

\(x^3+y^3+z^3-3xyz\)

=\(\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)

=\(\left[\left(x+y\right)^3+z^3\right]-\left(3x^2y+3xy^2+3xyz\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

xong thay vào

12 tháng 7 2015

Đặt a+b = x ; b+c = y ; c+a = z

=> H = x^3 +y^3 +z^3 -3.x.y.z

         = [x+y]^3 -3.x^2.y -3.x.y^2+ z^3 - 3.x.y.z

          = {[x+y]^3+z^3} -3.x.y[x+y+z]

          = [x+y+z].{[x+y]^2-[x+y].z+z^2} +3.x.y[x+y+z]

          = [x+y+z] . [x^2+y^2+2.x.y-x.z-y.z+z^2+3.x.y]

           = [x+y+z]. [x^2+y^2+z^2-xy-y.z-x.z]

           = [a+b+b+c+c+a]. {[a+b]^2+[b+c]^2+[c+a]^2-[a+b].[b+c]-[a+b].[a+c] - [b+c].[c+a]}

            = 2.[a+b+c] .[a^2+b^2 +b^2 +c^2 +c^2 +a^2 +2.ab.+2.bc+2.ac-ab-b^2-ac-bc-a^2-ab-ac-bc-bc-c^2-ab-ac]

            = 2.[a+b+c].[a^2+b^2+c^2-ab-ac-bc]

3 tháng 2 2017

rút gọn a

(-a-b+c)-(-a-b-c)