Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x + 2 )( x2 - 2x + 4 ) - ( 18 + x3 )
= x3 + 8 - 18 - x3 = -10
b) ( 2x - y )( 4x2 + 2xy + y2 ) - ( 2x + y )( 4x2 - 2xy + y2 )
= 8x3 - y3 - ( 8x3 + y3 )
= 8x3 - y3 - 8x3 - y3 = -2y3
c) ( x - 3 )( x + 3 ) - ( x + 5 )( x - 1 )
= x2 - 9 - ( x2 + 4x - 5 )
= x2 - 9 - x2 - 4x + 5 = -4x - 4
d) ( 3x - 2 )2 + ( x + 1 )2 + 2( 3x - 2 )( x + 1 )
= ( 3x - 2 + x + 1 )2
= ( 4x - 1 )2
a. gọi phần đầu đấy là A nhá, để đỡ cần viết lại
A=...............
= (3x+5)2 + ( 3x-5)2 - 9x2 -4
= (9x2 +30x + 25 ) + ( 9x2 -30x+ 25 ) - 9x2 -4
= 9x2 +30x + 25 + 9x2 -30x+25-9x2 -4
= 9x2 + 46
sai thì thôi nhé. bạn nên kiểm tra lại
d. (2x-1)*(4x2 + 2x +1 ) - 8x*( x2 +1) - 5
= 8x3 -1 - 8x3 -8x-5
= -8x-6
= -2(4x+3)
sai nhé. bạn nên kiểm tra lại
=a, (x-3)(x+3)-(x-7)(x+7)= x2 - 9 - x2 + 7
= -2
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)= (4x-5)2 - 2(4x+5)(3x-2) + (3x-2)2
= ( 4x - 5 - 3x + 2 )2
= ( x - 3 )2
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2= 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= (3x-y)2+ 2(3x-y)(3x+y)+ (3x+y)2
= ( 3x - y + 3x + y )2
= ( 6x )2
= 36x2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
1, rút gọn
a, (x-3)(x+3)-(x-7)(x+7)
= x^2 - 9 - (x^2 - 49)
= x^2 - 9 - x^2 + 49
= 40
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)
= 16x^2 - 40x + 25 + 9x^2 - 12x + 4 - 2(12x^2 - 8x + 15x - 10)
= 25x^2 - 52x + 29 - 24x^2 + 16x - 30x + 20
= x^2 - 66x + 49
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= 2(9x^2 - y^2) + 9x^2 - 6xy + y^2 + 9x^2 + 6xy + y^2
= 18x^2 - 2y^2 + 18x^2 + 2y^2
= 36x^2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
= dài vl
a) (2x-y)(2x+y)-(2x+y)^2
= 4x2-y2-(4x2+4xy+y2)
= 4x2-y2-4x2-4xy-y2
= -4xy
b) (x-3)(x^2+3x+9)-(5-x)^2
= (x3-27)-(25-10x+x2)
= x3-27-25+10x-x2
= x3-x2+10x-52
c) (2x+y)(4x^2-2xy+y^2)-(2x+y)^3
= (2x)3+y3- ((2x)3+3.4x2.y+3.y2.2x+y3)
= 8x3+y3-(8x3+12x2y+6xy2+y3)
= 8x3+y3-(8x3+12x2y+6xy2+y3)
= 8x3+y3-8x3-12x2y-6xy2-y3
=-12x2y-6xy2
d) (3x-5)^2-(3x+5)^2
= (3x-5-3x-5)(3x-5+3x+5)
= -10.6x
= -60x
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
a; (\(x+y\))2 - 4.(\(x-y\))2
= \(x^2+2xy+y^2\) - 4\(x^2+8xy-4y^2\)
= (\(x^2-4x^2\)) + (2\(xy+8xy\)) + (y2 - 4y2)
= - 3\(x^2\) + 10\(xy\) - 3y2
b; (\(x+y\))3 - 2\(x^3\) + (\(x-y\))3
= \(x^3+3x^2y+3xy^2+y^3\) - 2\(x^3\) + \(x^3-3x^2y+3xy^2-y^3\)
= (\(x^3\) + \(x^3\)- 2\(x^3\)) + (3\(x^2y-3xy^2\)) + (3\(xy^2\) + 3\(xy^2\)) + (y3-y3)
= 0 + 0 + 6\(xy^2\) + 0
= 6\(xy^2\)