Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+\left|x-3\right|\)
\(=x+3-\left(x-3\right)\)
\(=x+3-x+3\)
\(=6\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
\(=x+2-\left(-x\right)\)
\(=x+2+x\)
\(=2x+2=2\left(x+1\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)
\(=\frac{\left|x-1\right|}{x-1}\)
\(=\frac{x-1}{x-1}=1\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)
\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)
\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)
\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)
\(=\left|x-2\right|-1\)
\(=-\left(x-2\right)-1\)
\(=-x+2-1\)
\(=-x+1=-\left(x-1\right)\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
Ta có:
x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
= \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)
= \(\frac{1}{2}\)(\(\sqrt{2}\)-1)
=> 2x = \(\sqrt{2}\)-1
=> (2x)2= ( \(\sqrt{2}\)-1)2
=> 4x2= 2-2\(\sqrt{2}\)+1
=> 4x2= -2( \(\sqrt{2}\)-1)+1
=> 4x2= -4x +1 => 4x2+4x-1=0
Lại có:
A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19
= [ x3( 4x2+4x-1) +1]19
=1
A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3
= (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3
= 23=8
A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)
= \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)
Cộng 3 số vào ta được A