Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!
Bài 1
a) \(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\left(Đpcm\right)\)
b) \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\left(Đpcm\right)\)
Bài 2
a) \(16x^2-24xy+9y^2\)
\(=\left(4x\right)^2-2.4x.3y+\left(3y\right)^2\)
\(=\left(4x-3y\right)^2\)
b) \(\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
Bài 3
a) \(\left(x+2\right)\left(x^2-2x+4\right)+x\left(x-5\right)\left(x+5\right)=-17\)
\(\Rightarrow x^3+2^3+x\left(x^2-5^2\right)=-17\)
\(\Rightarrow x^3+8+x^3-25x=-17\)
\(\Rightarrow2x^3-25x=-17-8=-25\)
Hình như câu này đề sai rồi đấy bạn
b) \(25x^2-2=0\)
\(\Rightarrow25x^2=2\)
\(\Rightarrow x^2=\dfrac{2}{25}\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{2}{25}}\\x=-\sqrt{\dfrac{2}{25}}\end{matrix}\right.\)
1.
\(a.\left(x+y\right).\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)\(b.\left(x-y\right)\left(x^2+xy+y^2\right)=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3\)2.
\(a.16x^2-24xy+9y^2=\left(4x\right)^2-2.4x.3y+\left(3y\right)^2=\left(4x-3y\right)^2\)\(b.\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
3.
\(b.25x^2-2=0\)
\(\Leftrightarrow25x^2=2\Leftrightarrow x^2=\dfrac{2}{25}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{2}{25}}\\x=-\sqrt{\dfrac{2}{25}}\end{matrix}\right.\)
1) \(4a\left(x-5\right)-2\left(5-x\right)\)
\(=4a\left(x-5\right)+2\left(x-5\right)\)
\(=2\left(x-5\right)\left(2a+1\right)\)
2) \(-3a\left(x-3\right)-a^2\left(3-x\right)\)
\(=-3a\left(x-3\right)+a^2\left(x-3\right)\)
\(=a\left(x-3\right)\left(-3+a\right)\)
3) \(2a^2b\left(x+y\right)-4a^3b\left(-x-y\right)\)
\(=2a^2b\left(x+y\right)+4a^3b\left(x+y\right)\)
\(=2a^2b\left(x+y\right)\left(1+2a\right)\)
4) \(-3a\left(x-3\right)-a^2\left(3-a\right)\)
Mình nghĩ câu này đề sai và hình như nó là câu 2 thì phải
5) \(x^{m+1}-x^m\)
\(=x^m.x-x^m\)
\(=x^m\left(x-1\right)\)
6) \(x^{m+1}+x^m\)
\(=x^m.x+x^m\)
\(=x^m\left(x+1\right)\)
7) \(x^{m+2}-x^m\)
\(=x^m.x^2-x^m\)
\(=x^m\left(x^2-1\right)\)
\(=x^m\left(x-1\right)\left(x+1\right)\)
8) \(x^{m+2}-x^2\)
\(=x^m.x^2-x^2\)
\(=x^2\left(x^m-1\right)\)
9) \(x^{m+2}-x^{m+1}\)
\(=x^{m+1}.x-x^{m+1}\)
\(=x^{m+1}\left(x-1\right)\)
\(x^2-25=y\left(y+6\right)\) (1)
\(\Leftrightarrow x^2-y^2-6y-25=0\)
\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16\)
Xét các trường hợp, ta tìm được các no nguyên của pt (1).
\(x^2+x+6=y^2\) (2)
\(\Leftrightarrow4x^2+4x+24=4y^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2y^2\right)=-23\)
\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)
Xét các trường hợp, ta tìm được các no nguyên của pt (2).
\(x^2+13y^2=100+6xy\) (3)
\(\Leftrightarrow x^2-6xy+9y^2+4y^2=100\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(2y\right)^2=0^2+\left(\pm10\right)^2=\left(\pm6\right)^2+\left(\pm8\right)^2\)
Xét các trường hợp, ta tìm được các no nguyên của pt (3).
\(x^2-4x=169-5y^2\) (4)
\(\Leftrightarrow\left(x-2\right)^2+5y^2=173\)
Ta thấy:
\(5y^2\) luôn có chữ số tận cùng là 5 hoặc 0
=> Để thoả mãn pt (4), (x - 2)2 phải có chữ số tận cùng là 8 hoặc 3 (vô lý)
Vậy pt (4) vô n0.
\(x^2-x=6-y^2\) (5)
\(\Leftrightarrow4x^2-4x=24-4y^2\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2y\right)^2=25=\left(\pm25\right)^2+0^2=\left(\pm3\right)^2+\left(\pm4\right)^2\)
Xét các trường hợp, ta tìm được các no nguyên của pt (5).
\(y^3=x^3+x^2+x+1\left(1\right)\)
Ta có:
\(y^3=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)
\(\Rightarrow y>x\)
\(\Rightarrow y\ge x+1\)
\(\Rightarrow y^3\ge\left(x+1\right)^3\)
\(\Rightarrow x^3+x^2+x+1\ge x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x\le0\)
\(\Leftrightarrow2x\left(x+1\right)\le0\)
\(\Rightarrow-1\le x\le0\) mà x là số nguyên
=> x = - 1 hoặc x = 0
(+) x = - 1
VT = 0
=> y = 0 ; x = - 1 (nhận)
(+) x = 0
VT = 1
=> y = 1 ; x = 0 (nhận)
Vậy pt (1) có nonguyên (x ; y) = (0 ; 1) ; (- 1 ; 0)
\(x^4+x^2+1=y^2\) (2)
(+)
\(\left(2\right)\Leftrightarrow y^2=x^4+2x^2+1-x^2\)
\(\Leftrightarrow y^2-\left(x^2+1\right)^2=x^2\)
(+)
\(\left(2\right)\Leftrightarrow x^4+4x^2+4-3x^2-3=y^2\)
\(\Leftrightarrow\left(x^2+2\right)^2-y^2=3\left(x^2+1\right)\)
Ta thấy:
Với mọi \(x\ne0\) thì \(\left(x^2+1\right)^2< y^2< \left(x^2+2\right)^2\) (vô lý)
=> x = 0
=> y = 1 (nhận)
Vậy pt (2) có nonguyên (x ; y) = (0 ; 1)
a) x2 + y2
= (x2 + 2xy + y2) - 2xy
= (x + y)2 - 2xy
= m2 - 2n
b) x3 + y3
= (x + y)(x2 - xy + y2)
= m (x2 + 2xy + y2 - 3xy)
= m [(x + y)2 - 3xy]
= m . [ m2 - 3n ]
a) \(\left(m+n\right)^2+\left(m-n\right)^2+2\left(m+n\right)\left(m-n\right)\)
'\(=\left[\left(m+n\right)+\left(m-n\right)\right]^2=4m^2\)
b) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
\(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)
\(=y^4-81-y^4+4=-77\)