Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)
\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)
\(A=2^2-\left(\sqrt{5}\right)^2\)
\(A=4-5\)
\(A=-1\)
____
\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)
\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(B=6-121\)
\(B=-115\)
\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)
Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)
Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)
\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)
\(=2\sqrt{x-4}\)
Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
\(1,=\left|1-\sqrt{2}\right|+\left|\sqrt{2}+3\right|\\ =1-\sqrt{2}+3+\sqrt{2}\\ =4\\ 2,=\left|\sqrt{3}-2\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}-2+\sqrt{3}-1\\ =2\sqrt{3}-3\\ 3,=\left|\sqrt{5}-3\right|+\left|\sqrt{5}-2\right|\\ =\sqrt{5}-3+\sqrt{5}-2\\ =2\sqrt{5}-5\\ 4,=\left|3+\sqrt{2}\right|+\left|3-\sqrt{2}\right|\\ =3+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =3+\sqrt{3}\\ 5,=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\\ =2-\sqrt{3}-\left(2+\sqrt{3}\right)\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)
i: =-12*căn 3/2căn 3=-6
h: =72căn 2/12căn 2=6
g: =25căn 12/5căn 6=5căn 2
f: =(15:5)*căn 6:3=3căn 2
d: =-1/2*6*căn 10=-3căn 10
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với
\(c,\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)
\(=\sqrt{4+5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{29}\)
a: \(=\left(\sqrt{6}+\sqrt{2}+\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=\left(6+\sqrt{6}+\sqrt{2}+2\sqrt{3}+3\sqrt{2}+\sqrt{3}+\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=\left(7+2\sqrt{6}+3\sqrt{3}+4\sqrt{2}\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=35-14\sqrt{2}-7\sqrt{3}+10\sqrt{6}-8\sqrt{3}-6\sqrt{2}+\left(3\sqrt{3}+4\sqrt{2}\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=35-20\sqrt{2}-15\sqrt{3}+10\sqrt{6}+15\sqrt{3}-10\sqrt{6}+20\sqrt{2}-22\)
\(=13\)
b: \(=\left(\sqrt{15}-1-\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}-1\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)
\(=\left[16-2\sqrt{15}-3\sqrt{5}+\sqrt{3}+5\sqrt{3}-\sqrt{5}\right]\left(7-2\sqrt{3}+\sqrt{5}\right)\)
\(=\left(16-2\sqrt{15}-4\sqrt{5}+6\sqrt{3}\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)
=56