Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ bạn tự tìm nha : )
k, Ta có : \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}\)
\(=\frac{3x\left(1-2x\right)\left(1+2x\right)}{2x\left(x+4\right)\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}\)
j, Ta có : \(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}=\frac{x+y}{y-x}:\frac{x\left(x+y\right)}{3\left(x^2-y^2\right)}=\frac{x+y}{y-x}.\frac{3\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\)
\(=\frac{3\left(x-y\right)\left(x+y\right)}{x\left(y-x\right)}=\frac{3\left(x-y\right)\left(x+y\right)}{-x\left(x-y\right)}=\frac{-3\left(x+y\right)}{x}\)
i, Ta có : \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a\left(a+b\right)}{-\left(a-b\right)}:\frac{a+b}{2\left(a^2-b^2\right)}=\frac{a\left(a+b\right)}{-\left(a-b\right)}.\frac{2\left(a-b\right)\left(a+b\right)}{a+b}\)
\(=\frac{2a\left(a+b\right)\left(a-b\right)}{-\left(a-b\right)}=-2a\left(a+b\right)\)
h, = k,
f, Ta có : \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)\left(x-6\right)}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
\(1,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2x+6}-\frac{x-6}{x\left(2x-6\right)}=\frac{3x-x+6}{x\left(2x-6\right)}=\frac{2x+6}{x\left(2x-6\right)}\)
\(2,\frac{1}{1-x}+\frac{2x}{x^2-1}=\frac{-1\left(x+1\right)+2x}{x^2-1}=\frac{x-1}{x^2-1}=\frac{1}{x+1}\)
\(3,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
\(4,\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)
\(5,\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2x\left(x+4\right)}\)
\(6,\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{9y}{2x^2}\)
\(a,\frac{15x^2y^4}{5x^3z}=\frac{3y^4}{x}\)
\(b,\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
\(c,\frac{5x^2+10xy+5y^2}{15x+15y}=\frac{5\left(x^2+2xy+y^2\right)}{15\left(x+y\right)}=\frac{5\left(x+y\right)^2}{15\left(x+y\right)}=\frac{x+y}{3}\)
\(d,\frac{2x^3-2}{11x^2-22x+11}=\frac{2\left(x^3-1\right)}{11\left(x^2-2x+1\right)}=\frac{2\left(x-1\right)\left(x^2+x+1\right)}{11\left(x-1\right)^2}=\frac{2\left(x^2+x+1\right)}{11\left(x-1\right)}\)
4x^2/5y^2 * 5y/6x * 3y/2x= 1/3
(x-2)(x+2)/3(x+4) * x+4/2(x-2)=x+2/6
5(x+2)/4(x-2)* -2(x-2)/x+2=-5/2
a)\(\Rightarrow\frac{3}{2.\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}\)
\(\Rightarrow\frac{3x-x+6}{2x.\left(x+3\right)}\)
\(\Rightarrow\frac{2x+6}{2x.\left(x+3\right)}=\frac{2.\left(x+3\right)}{2x.\left(x+3\right)}=\frac{2}{2x}=\frac{1}{x}\)
b
=\(\frac{96x^4-75y^7}{40x^3y^3}\)
c, phan tich ra:
=\(\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}=\frac{x+2}{6}\)
=
a)
\(\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{12x.15y^4}{5y^3.8x^3}=\frac{4.3.x.3.5.y^4}{5y^3.2.4x^3}=\frac{9y}{2x^2}\)
b) \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a^2+ab}{b-a}.\frac{2a^2-2b^2}{a+b}=-\frac{a\left(a+b\right)}{a-b}.\frac{2\left(a-b\right)\left(a+b\right)}{a+b}\)
\(=-\frac{a}{1}.\frac{2\left(a+b\right)}{1}=-2a\left(a+b\right)=-2a^2-2ab\)