\(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2021
Xét biểu thức phụ : 1 (2n+3)√2n+1+(2n+1)√2n+3 = 1 √2n+1.√2n+3(√2n+1+√2n+3) = √2n+3−√2n+1 √2n+1.√2n+3[(2n+3)−(2n+1)] = √2n+3−√2n+1 2√2n+1.√2n+3 = 1 2 ( 1 √2n+1 − 1 √2n+3 )với n≥1 Áp dụng : S= 1 3√1+1√3 + 1 3√5+5√3 + 1 5√7+7√5 +...+ 1 101√103+103√101 = 1 2 ( 1 √1 − 1 √3 )+ 1 2 ( 1 √3 − 1 √5 )+ 1 2 ( 1 √5 − 1 √7 )+...+ 1 2 ( 1 √101 − 1 √103 ) = 1 2 (1− 1 √3 + 1 √3 − 1 √5 + 1 √5 − 1 √7 +...+ 1 √101 − 1 √103 ) = 1 2 (1− 1 √103 )
6 tháng 8 2016

Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)

\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)

\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)

Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)

\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)

7 tháng 8 2016

DM CHƯA HỌC ĐẾN

6 tháng 3 2021
Xét biểu thức phụ : 1 (2n+3)√2n+1+(2n+1)√2n+3 = 1 √2n+1.√2n+3(√2n+1+√2n+3) = √2n+3−√2n+1 √2n+1.√2n+3[(2n+3)−(2n+1)] = √2n+3−√2n+1 2√2n+1.√2n+3 = 1 2 ( 1 √2n+1 − 1 √2n+3 )với n≥1 Áp dụng : S= 1 3√1+1√3 + 1 3√5+5√3 + 1 5√7+7√5 +...+ 1 101√103+103√101 = 1 2 ( 1 √1 − 1 √3 )+ 1 2 ( 1 √3 − 1 √5 )+ 1 2 ( 1 √5 − 1 √7 )+...+ 1 2 ( 1 √101 − 1 √103 ) = 1 2 (1− 1 √3 + 1 √3 − 1 √5 + 1 √5 − 1 √7 +...+ 1 √101 − 1 √103 ) = 1 2 (1− 1 √103 )

a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)

b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)

30 tháng 8 2015

\(\frac{1}{\text{ }\sqrt{\frac{3}{5}}+\sqrt{\frac{3}{7}}+1}=\frac{1}{\frac{\sqrt{3.7}+\sqrt{3.5}+\sqrt{5.7}}{\sqrt{5.7}}}=\frac{\sqrt{35}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)

Tương tự :

 \(\frac{1}{\sqrt{\frac{5}{3}}+\sqrt{\frac{5}{7}}+1}=\frac{\sqrt{21}}{\sqrt{35}+\sqrt{15}+\sqrt{21}}\)

 

\(\frac{1}{\sqrt{\frac{7}{3}}+\sqrt{\frac{7}{5}}+1}=\frac{\sqrt{15}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)

Bây giờ chỉ việc cộng lại chung mẫu

Kq ; 1 

27 tháng 9 2019

a) \(\sqrt{3+\sqrt{5}}\)\(-\sqrt{3-\sqrt{5}}\)\(=\frac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}\)\(=\frac{\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|}{\sqrt{2}}\)\(=\)\(\frac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}\)\(=\frac{2}{\sqrt{2}}=\sqrt{2}\)

15 tháng 6 2017

Bài rút gọn 

\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)

\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)

Bài gpt:

\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)

Đk:\(-1\le x\le3\)

\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)

Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm

Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)