Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{ab^2-ac^2-b^3+bc^2}=\frac{a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)}{a(b^2-c^2)-b(b^2-c^2)}\)
\(=\frac{(a^2-b^2)(b-c)-(b^2-c^2)(a-b)}{(a-b)(b^2-c^2)}=\frac{(a-b)(b-c)(a+b-b+c)}{(a-b)(b-c)(b+c)}=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}\)
\(=\frac{a-c}{b+c}\)
Ta có: \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(=\dfrac{a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)}{a\left(b^2-c^2\right)-b\left(b^2-c^2\right)}\)
\(=\dfrac{a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)
\(=\dfrac{\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)
\(=\dfrac{\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)
\(=\dfrac{\left(a-b\right)\left(b-c\right)\left(a+b-b-c\right)}{\left(b-c\right)\left(a-b\right)\left(b+c\right)}\)
\(=\dfrac{a-c}{b+c}\)
\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)
\(=\dfrac{\left(ab+bc+ca\right)^2-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=\dfrac{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=2\left(a+b+c\right)\)
Ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}=\frac{a^2+ab-bc-ab}{\left(a+b\right)\left(a+c\right)}=\frac{a\cdot\left(a+b\right)-b\cdot\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}=\frac{a}{a+c}-\frac{b}{a+b}\left(1\right)\)
tương tự
\(\frac{b^2-bc}{\left(a+b\right)\left(b+c\right)}=\frac{b}{a+b}-\frac{c}{b+c}\left(2\right)\)
\(\frac{c^2-ab}{\left(c+a\right)\left(b+c\right)}=\frac{c}{c+b}-\frac{a}{a+b}\left(3\right)\)
Cộng (1);(2) và (3) ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(c+b\right)}=\frac{a}{a+c}-\frac{b}{a+b}+\frac{b}{a+b}-\frac{c}{b+c}+\frac{c}{c+b}-\frac{a}{a+b}=0 \)
a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)
=a+b+c
b:
Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{x-y+z}{2}\)
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
Lời giải:
\(a^2(b-c)+b^2(c-a)+c^2(a-b)=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)
\(=(a^2-b^2)(b-c)-(b^2-c^2)(a-b)\)
\(=(a-b)(a+b)(b-c)-(b-c)(b+c)(a-b)\)
\(=(a-b)(b-c)(a+b-b-c)=(a-b)(b-c)(a-c)\)
Và:
\(ab^2-ac^2-b^3+bc^2=(ab^2-b^3)-(ac^2-bc^2)\)
\(=b^2(a-b)-c^2(a-b)=(b^2-c^2)(a-b)=(b-c)(b+c)(a-b)\)
Do đó: \(P=\frac{(a-b)(b-c)(a-c)}{(b-c)(b+c)(a-b)}=\frac{a-c}{b+c}\)
\(A=\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(=\dfrac{a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)
\(=\dfrac{\left(a^2-b^2\right)\left(b+c\right)-\left(b^2-c^2\right)\left(a-b\right)}{\left(a-b\right)\left(b^2-c^2\right)}\)
\(\dfrac{\left(a-b\right)\left(a+b\right)\left(b+c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}\)
\(=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}\)
\(=\dfrac{a-c}{b+c}\)
Vậy..