K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

a) (2x+3)2-2(2x+3)(2x+5)+(2x+5)2

=4x2+12x+9-(4x+6)(2x+5)+4x2+20x+25

=4x2+12x+9-(8x2+12x+20x+30)+4x2+20x+25

=4x2+12x+9-8x2-12x-20x-30+4x2+20x+25

=4

b) (x2+x+1)(x2-x+1)(x2-1)

=((x2+1)2-x2)(x2-1)

=(x4+x2+1)(x2-1)

=x6+x4+x2-x4-x2-1

=x6-1

c)(a+b-c)2+(a-b+c)2-2(b-c)2

=a2+b2+c2+2ab-2ac-2bc+a2+b2+c2-2ab+2ac-2bc-2(b2-2bc+c2)

=2a2+2b2+2c2-4bc-2b2+4bc-2c2

=2a2

d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2

= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2+2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab

=4a2+4b2+4c2+4ab+4bc

 

 

19 tháng 7 2021

d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2

= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2-2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab

=4a2+4b2+4c2

 

 

2 tháng 9 2021

a/ \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)

\(=-3x^2+7x-4\)

Thay x = 2 vào A được:

\(=-3.2^2+7.2-4=-2\)

Vậy: Giá trị của A khi x = 2 là -2

==========

b/ \(B=126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)

\(=126y^3+x^3-125y^3\)

Thay x = -5 và y = -3 vào B được: 

\(126.\left(-3\right)^3+\left(-5\right)^3-125.\left(-3\right)^3=-152\)

Vậy: Giá trị của B tại x = -5 và y = -3 là -152

==========

c/ \(C=a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3+b^3-\left(a-b\right)^3\)

\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)

\(=2b^3+3a^2b-3ab^2\)

Thay a = -4 và b = 4 vào C được:

\(2.4^3+3.\left(-4\right)^2.4-3.\left(-4\right).4^2=512\)

Vậy: Giá trị của C tại a = -4 vào b = 4 là 512

a:Ta có: \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)

\(=-3x^2+7x-4\)

\(=-3\cdot2^2+7\cdot2-4\)

\(=-12-4+14=-2\)

c: Ta có: \(C=a^3+b^3-\left(a-b\right)\left(a^2-2ab+b^2\right)\)

\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)

\(=2b^3+3a^2b-3ab^2\)

\(=2\cdot4^3+3\cdot\left(-4\right)^2\cdot4-3\cdot\left(-4\right)\cdot4^2\)

\(=128+192+192=512\)

31 tháng 8 2021

Tách ra mỗi câu một lần.

Dài quá không ai làm đâu.

Nhìn nản lắm.

Câu 3: 

a: \(49^2=2401\)

b: \(51^2=2601\)

c: \(99\cdot100=9900\)

AH
Akai Haruma
Giáo viên
31 tháng 1

Lời giải:

\(a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z}\)

\(A=\frac{\frac{1}{x^2y^2}}{(\frac{1}{x^3}+\frac{1}{y^3}).\frac{1}{z^2}}=\frac{z^2}{x^2y^2.\frac{x^3+y^3}{x^3y^3}}=\frac{z^2}{\frac{x^3+y^3}{xy}}=\frac{xyz^2}{x^3+y^3}\)

13 tháng 7 2021

a) (a+b)3+(a-b)3=a3+3a2b+3ab2+b3+a3-3a2b+3ab2-b3

                          =2a3+6ab2

b) (a + b + c)2 + (a − b − c)2 + (b − c − a)2 + (c − a − b)2

=a2+b2+c2+2ab+2bc+2ca+a2+b2+c2-2ab+2bc-2ac+a2+b2+c2-2bc+2ca-2ba+a2+b2+c2-2ca+2ab-2cb

=4a2+4b2+4c2

a) Ta có: \(\left(a+b\right)^3+\left(a-b\right)^3\)

\(=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\cdot\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\cdot\left(a^2+3b^2\right)\)

\(=2a^3+6ab^2\)

21 tháng 2 2020

a,(a+2b+3c)^2-2(a+2b+3c)*(2a+b)+(2a +b) ^2 = (a+2b+3c-2a-b)2

=(-a+b+3c)2

b,(x-1)*(x+1 ) *(x^2+1)*(x^4+1)*(x^8+1)*(x^16+1)=(x2-1)(x2+1)(x4-1)(x8+1)(x16+1)=(x4+1)(x4-1)(x8+1)(x16+1)=(x8-1)(x8+1)(x16+1)

=(x16-1)(x16+1)=x32-1

22 tháng 2 2020

Đúng