Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)2A=4+4^2+4^3+...+4^101
2A-A=4^101-1
A=4^101-1
khong bit phai hoi muon gioi phai hoc
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
A=1+3+32+33+34+35+………..+399+3100
3A = 3+32+33+34+35+………..+3100+3101
3A - A = ( 3+32+33+34+35+………..+3100+3101 ) - ( 1+3+32+33+34+35+………..+399+3100 )
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
A = 21 - 22 + 23- 24 +....+ 299- 2100 + 2101
2A = 22 - 23 + 24 - 25 + .... + 2100 - 2101 + 2102
2A + A = 2102 + 2
A = \(\frac{2^{102}+2}{3}\)
\(A=2^1-2^2+2^3-2^4+........+2^{99}-2^{100}+2^{101}\)
Rút gọn A cũng chính là tính A nhé Thao Hoang
\(\Rightarrow2A=2^2-2^3+2^4-2^5+......+2^{100}-2^{101}+2^{102}\)
\(\Rightarrow2A-A=\left(2^2-2^3+2^4-2^5+......+2^{100}-2^{101}+2^{102}\right)-\left(2^1-2^2+2^3-2^4+.........+2^{99}-2^{100}+2^{101}\right)\)
\(\Rightarrow A=2^{102}-2^1\)
Vậy .....
A.3 =32 + 33 +34 + .... + 3100
A.3 - A =32 + 33 + 34 +.....+3100 - 3 - 31- 32 -....-399
A.2 = 3100 - 3
ta có 3100 = 34*25 suy ra 3100 tận cùng =1 suy ra 3100 -3 tận cùng bằng 8
Vậy A tận cùng bằng 4
Ta giữ nguyên 5
2xA=4^3+4^4+...+4^100
2xA-A=(4^3+4^4+...+4^100-4^2+4^3+...+4^99)
A=4^100-4+5
A=4^100+1
Vậy A=4^100+1
Ta có : \(A=5+4^2+4^3+...+4^{99}\)
\(A-5=4^2+4^3+...+4^{99}\)
\(4\left(A-5\right)=4^3+4^4+...+4^{100}\)
\(4\left(A-5\right)-\left(A-5\right)=\left(4^3+4^4+...+4^{100}\right)-\left(4^2+4^3+...+4^{99}\right)\)
\(\Leftrightarrow3\left(A-5\right)=4^{100}-4^2\)
\(\Rightarrow A-5=\frac{4^{100}-4^2}{3}\)
\(\Rightarrow A=\frac{4^{100}-4^2}{3}+5\)