Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html
ta có thể làm như sau: Bước 1: Rút gọn phần tử trong ngoặc đầu tiên: √a - 1 - 1 / √a = (√a * √a - √a - 1) / √a = (a - √a - 1) / √a Bước 2: Rút gọn phần tử trong ngoặc thứ hai: √a - 2 - √(a + 2) / √(a - 1) = (√a * √(a - 1) - 2 * √(a - 1) - √(a + 2)) / √(a - 1) = (a - √a - 2√(a - 1) - √(a + 2)) / √(a - 1) Bước 3: Thay các giá trị rút gọn vào biểu thức ban đầu: a = 1 / ((a - √a - 1) / √a) / (√a + 1 / ((a - √a - 2√(a - 1) - √(a + 2)) / √(a - 1))) Bước 4: Rút gọn biểu thức: a = √a * √(a - 1) / (a - √a - 1) * (√(a - 1) / (a - √a - 2√(a - 1) - √(a + 2))) Bước 5: Rút gọn thêm: a = √a * √(a - 1) / (a - √a - 1) * (√(a - 1) / (a - √a - 2√(a - 1) - √(a + 2))) * (√(a - 1) / (a - √a - 2√(a - 1) - √(a + 2))) Bước 6: Rút gọn thêm: a = (√a * √(a - 1))^2 / (a - √a - 1) * (√(a - 1))^2 / (a - √a - 2√(a - 1) - √(a + 2)) Bước 7: Rút gọn cuối cùng: a = (a(a - 1)) / ((a - √a - 1)(a - √a - 2√(a - 1) - √(a + 2)))
\(\dfrac{1}{\sqrt{5}-2}+\dfrac{10}{\sqrt{5}}\)
\(=\dfrac{1\cdot\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}+\dfrac{2\sqrt{5}\cdot\sqrt{5}}{\sqrt{5}}\)
\(=\dfrac{\sqrt{5}+2}{5-2^2}+2\sqrt{5}\)
\(=\dfrac{\sqrt{5}+2}{1}+2\sqrt{5}\)
\(=\sqrt{5}+2+2\sqrt{5}\)
\(=3\sqrt{5}+2\)
a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)
\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
Bài 2 :
a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)
\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)
c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)
\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)
\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)
\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)
\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)
\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)
\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)