K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

\(4^5\cdot9^4-2.6^9=\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9=2^{10}.3^8-2.2^9.3^9=2^{10}.3^8-2^{10}.3^9=3^8-3^9=-13122\)
\(2^{10}.3^8+6^8.20=2^{10}.3^8+\left(2.3\right)^8.2^2.5=2^{10}.3^8+2^8.3^8.2^2.5=2^{10}.3^8+2^{10}.3^8.5=2^{10}.3^8.\left(1+5\right)=2^{10}.3^8.6=2^{10}.3^8.2.3=2^{11}.3^9\)

5 tháng 10 2017

\(2^{12}.3^5-4^6.9^2=663552\)

\(\left(2^2.3\right)^6+8^4.3^5=3981312\)

5 tháng 10 2017

\(\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^4}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^4}=\frac{2^{12}\cdot\left(3^5-3^4\right)}{2^{12}\cdot\left(3^6+3^4\right)}=\frac{2^{12}\cdot3}{2^{12}\cdot3^4\cdot2\cdot5}=\frac{1}{3^3\cdot2\cdot5}=\frac{1}{270}\)

9 tháng 1 2017

\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)

\(=\frac{2^{10}.3^8-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.\left(2^2.5\right)}\)

\(=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)

\(=\frac{-2}{6}\)

\(=\frac{-1}{3}\)

Vậy \(A=\frac{-1}{3}\)

28 tháng 2 2020

Rút gọn niểu thức sau :

A= -52 - 5 . 3 / 53 + 52 . 32

B= 46  . 95 + 69 . 120 / 84 . 312 - 611

25 tháng 6 2017

a, \(\dfrac{4^2.4^3}{2^{10}}=\dfrac{4^5}{2^{10}}=\dfrac{\left(2^2\right)^5}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)

b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

c, \(\dfrac{9^7.5^6.125^9}{15^{15}.5^{18}}=\dfrac{3^{21}.5^6.5^{27}}{5^{15}.3^{15}.5^{18}}=\dfrac{3^{21}.5^{33}}{3^{15}.5^{33}}=3^6=729\)

d, \(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)

\(=\dfrac{2^{12}.3^9.\left(1+3.5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\dfrac{2.16}{3^2.5}=\dfrac{32}{45}\)

Chúc bạn học tốt!!!

21 tháng 9 2017

men có phải mem đâu

21 tháng 9 2017

rùi trời giúp mik đii MEN ~~~

25 tháng 8 2020

P = \(2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^5\cdot3\) 

\(=2^{12}\cdot3^5-2^{12}\cdot3^5\cdot3\) 

\(=2^{12}\cdot3^5\left(1-3\right)\) 

\(=2^{12}\cdot-2\cdot3^5\) 

\(=-2^{13}\cdot3^5\) 

b) 

\(=2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^6\) 

\(=2^{12}\cdot3^6+2^{12}\cdot3^6\)      

\(=2\cdot2^{12}\cdot3^6\)                        

\(=2^{13}\cdot3^6\)