K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

\(A=2^{2017}-2^{2016}-2^{2015}-..........-2^5\)

\(\Leftrightarrow A=2^{2017}-\left(2^{2016}+2^{2015}+..........+2^5\right)\)

Đặt :

\(B=2^{2016}+2^{2017}+...........+2^5\)

\(\Leftrightarrow2B=2^{2017}+2^{2016}+..........+2^6\)

\(\Leftrightarrow2B-B=\left(2^{2017}+2^{2016}+.......+2^6\right)-\left(2^{2016}+2^{2015}+......+2^5\right)\)

\(\Leftrightarrow B=2^{2017}-2^5\)

\(\Leftrightarrow A=2^{2017}-\left(2^{2017}-2^5\right)\)

\(\Leftrightarrow A=2^{2017}-2^{2017}-2^5\)

\(\Leftrightarrow A=0+2^5\)

\(\Leftrightarrow A=32\)

15 tháng 8 2017

A = 22017 - 22016 - 22015 - … - 25

= 22017 - (22016 + 22015 + … + 25)

Đặt E = 22016 + 22015 + … + 25

2E = 22017 + 22016 + … + 26

2E - E =(22017 - 22016 - … - 26) - (22016 - 22015 - … - 25)

E = 22017 - 25

=> A = 22017 - (22017 - 25)

= 22017 - 22017 + 25

= 32

NV
20 tháng 2 2019

\(B=1-5+5^2-5^3+...+5^{2016}-5^{2017}\) (1)

\(\Rightarrow5B=5-5^2+5^3-5^4+...+5^{2017}-5^{2018}\) (2)

Cộng vế với vế của (1) và (2):

\(6B=1+5-5+5^2-5^2+5^3-5^3+...+5^{2017}-5^{2017}-5^{2018}\)

\(\Rightarrow6B=1-5^{2018}\)

\(\Rightarrow B=\dfrac{1-5^{2018}}{6}\)

16 tháng 6 2017

Ta có:

f ( 1 ) = \(a_0+a_1+....+a_{2017}\)

mà f ( x) = \(\left(x+2\right)^{2017}\)

=> \(S=f\left(1\right)=3^{2017}\)

18 tháng 6 2017

Hiếu , tớ hỏi này tại sao lại là f(-1) hả ?

25 tháng 12 2019

Mình thấy có 2 câu đúng. Trần Nguyễn Thiên Mai

27 tháng 12 2019

giờ sao ta???

24 tháng 1 2020

Câu hỏi của Nguyễn Minh Vũ - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo ở link trên.

30 tháng 1 2021

thay x=1 vào A(x)= (3-4x+x2 )2016 . (3+4x+x2)2017 là ra nha

2 tháng 7 2017

a.Ta có:
\(5^3=125\)
\(5^5=3125\)
\(5^7=78125\)
....
\(5^{2n+1}=\left(...125\right)\)
\(\Rightarrow5^{2017}=5^{1008.2+1}=\left(...125\right)\)

1 tháng 1 2017

thế này mà ko biết lM

1 tháng 1 2017

thay x=1 vào biểu thức và tính chính xác số đó là tổng đó

19 tháng 9 2016

a) Đặt \(A=2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2-2^1\)

\(\Rightarrow2A=2^{2017}-2^{2016}+2^{2015}-2^{2014}+...+2^3-2^2\)

\(\Rightarrow2A+A=\left(2^{2017}-2^{2015}+2^{2014}-2^{2013}+...+2^3-2^2\right)+\left(2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2+2^1\right)\)

\(\Rightarrow3A=2^{2017}+1\)

\(\Rightarrow A=\frac{2^{2017}+1}{3}\)

b) Đặt \(B=3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\)

\(\Rightarrow3B=3^{1001}-3^{1000}+3^{999}-3^{997}+...+3^3-3^2+3^1\)

\(\Rightarrow3B+B=\left(3^{1001}-3^{1000}+3^{999}-3^{998}+...+3^3-3^2+3^1\right)+\left(3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\right)\)

\(\Rightarrow4B=3^{1001}+3^0\)

\(\Rightarrow B=\frac{3^{1001}+1}{4}\)

 

19 tháng 9 2016

a) Đặt A = 22016 - 22015 + 22014 - 22013 + ... + 22 - 21

2A = 22017 - 22016 + 22015 - 22014 + ... + 23 - 22

2A + A = (22017 - 22016 + 22015 - 22014 + ... + 23 - 22) + (22016 - 22015 + 22014 - 22013 + ... + 22 - 21)

3A = 22017 - 21

3A = 22017 - 2

\(A=\frac{2^{2017}-2}{3}\)

b) lm tương tự câu a

15 tháng 10 2018

\(M=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)

Gọi \(A=2018^{2019}+2018^{2018}+...+2018^2+2018\)

\(\Rightarrow2018A=2018^{2020}+2018^{2019}+...+2018^3+2018^2\)

\(\Rightarrow2018A-A=2018^{2020}-2018\)

\(\Rightarrow2017A=2018^{2020}-2018\)

\(\Rightarrow A=\left(2018^{2020}-2018\right)\div2017\)

\(\Rightarrow M=\left(2018^{2020}-2018\right)\div2017.2017+1\)

\(\Rightarrow M=2018^{2020}-2018+1\)

\(\Rightarrow M=2018^{2020}-2017\)