K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

a,\(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)

\(=\dfrac{2y}{3\left(x+y\right)^2}\)

b,\(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)

\(=\dfrac{\left(x^2-x\right)+\left(-xy+y\right)}{\left(x^2-x\right)+\left(xy-y\right)}\)

\(=\dfrac{x\left(x-1\right)-y\left(x-1\right)}{x\left(x-1\right)+y\left(x-1\right)}\)

\(=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)

\(=\dfrac{x-y}{x+y}\)

c,\(\dfrac{3x^2-12x+12}{x^4-8x}\)

\(=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-2^3\right)}\)

\(=\dfrac{3\left(x-2\right)^2}{x\left[\left(x-2\right)\left(x^2+2x+4\right)\right]}\)

\(=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

1 tháng 11 2018

mình cần gấp nhé mọi người 13 giờ mk đi học rồi

15 tháng 11 2022

Bài 1:

b: =x^2-10x+x-10

=(x-10)(x+1)

c: \(=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\)

d: \(=3x^2+5x-3x-5=\left(3x+5\right)\left(x-1\right)\)

e: \(=\left(2x+y\right)^3\)

15 tháng 9 2020

A = x3 + 3x2 + 3x - 899

= (x3 + 3x2 + 3x + 1) - 900

= (x + 1)3 - 900

= (29 + 1)3 - 900 = 303 - 900 = 26100

B = x3 - 6x2 + 12x + 10

= (x3 - 6x2 + 12x - 8) + 18

= (x - 2)3 + 18

= (12 - 2)3 + 18 = 103 + 18 = 1000 + 18 = 1018

c) C = 8x3 - 27y3

= (2x)3 - (3y)3

= (2x - 3y)(4x2 + 6xy + 9y2)

= (2x - 3y)(4x2 - 12xy + 9y2) + (2x - 3y).18xy

= (2x - 3y)(2x - 3y)2 + (2x - 3y).18xy

= (2x - 3y)3 + (2x - 3y).18xy

= 53 + 5.18.4

= 125 - 360

= -235

D = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y)

= (x + y)(x2 - xy + y2) + 3x3y + 3xy3 + 6x2y2

= x2 + y2 - xy + 3x3y + 3xy3 + 6x2y2 

= (x + y)2 - 3xy + 3x3y + 3xy3 + 6x2y2 

= 1 - 3xy(2xy - 1) + 3xy(x2 + y2)

= 1 - 3xy(x2 + y2 + 2xy - 1)

= 1 - 3xy[(x + y)2 - 1]

= 1 - 0 = 1

10 tháng 7 2016

Bài 1:

  • a,(2+xy)^2=4+4xy+x^2y^2
  • b,(5-3x)^2=25-30x+9x^2
  • d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
6 tháng 10 2021

a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)

b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)

c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)

d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)

e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)

27 tháng 11 2016

\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)

\(=\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)\left(x+y\right)^2}\)

\(=\frac{10y}{15\left(x+y\right)^2}\)

\(\frac{x^2-xy-x+y}{x^2+xy-x-y}\)

\(=\frac{\left(x^2-x\right)-\left(xy-y\right)}{\left(x^2-x\right)+\left(xy-y\right)}\)

\(=\frac{x\left(x-1\right)-y\left(x-1\right)}{x\left(x-1\right)+y\left(x-1\right)}\)

\(=\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)

\(=\frac{x-y}{x+y}\)

27 tháng 11 2016

a)\(\frac{2xy}{3\left(x+y\right)^2}\)

b)=\(\frac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)=\(\frac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}\)

=\(\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)=\(\frac{\left(x-y\right)}{\left(x+y\right)}\)

19 tháng 8 2020

a, -x - y2 + x2 - y = (x2 - y2) - (x + y)

= (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)

b, x( x + y ) - 5x - 5y = x(x + y) - 5(x + y)

= (x - 5)(x + y)
c, x2 - 5x + 5y - y2 = (x - y)(x + y) - 5(x - y)

= (x - y)(x + y - 5)
d, 5x3 - 5x2y - 10x2 + 10xy = 5x2(x - y) - 10x(x - y)

= 5x(x - y)(x - 2)
e, 27x3 - 8y3 = (3x - 2y)(9x2 + 6xy + 4y2)
f, x2 - y2 - x - y = (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)
g, x2 - y2 - 2xy + y2 = (x2 - 2xy + y2) - y2

= (x - y)2 - y2

= (x - y - y)(x - y + y) = x(x - 2y)
h, x2 - y2 + 4 - 4x = (x2 - 4x + 4) - y2

= (x - 2)2 - y2

= (x - y - 2)(x + y - 2)
i, x3 + 3x2 + 3x + 1 - 27z3 = (x + 1)3 - 27z3

= (x+1-3z)(x2+2x+1+3xz+3z+9z2)
k, 4x2 + 4x - 9y2 + 1 = (2x + 1)2 - 9y2

= (2x - 3y + 1)(2x + 3y + 1)
m, x2 - 3x + xy - 3y = x(x - 3) + y(x - 3)

= (x - 3)(x + y)

a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)

\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)

\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)

\(=5\cdot\left(1-2xy^2\right)\)

\(=5-10xy^2\)

b) Ta có: \(9x^2-\left(3x-4\right)^2\)

\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)

\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)

\(=4\cdot\left(6x-4\right)\)

\(=24x-16\)

c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)

\(=a^2-b^4\)

d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

\(=a^4+4a^3+4a^2-9\)

e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)

\(=x^2-y^2+12y-36\)

f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)

\(=\left(y-3\right)^2-\left(2z\right)^2\)

\(=y^2-6y+9-4z^2\)

g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)

\(=\left(2y\right)^3-5^3\)

\(=8y^3-125\)

h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)

\(=\left(3y\right)^3+4^3\)

\(=27y^3+64\)

i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)

\(=\left(x-3\right)^3-\left(x-2\right)^3\)

\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)

\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)

\(=-3x^2+15x-19\)

j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

\(=6x^2y+2y^3\)

5 tháng 10 2020

a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3

b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81

c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3

d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2

e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2

= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )

= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6

= -3x2 + 39x + 6

= -3( x2 - 13x - 2 )

f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3

= x3 + y3 + x3 - y3 - 2x3

= 0

g) x2 + 2x( y + 1 ) + y2 + 2y + 1

= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )

= x2 + 2x( y + 1 ) + ( y + 1 )2

= ( x + y + 1 )2

= [ ( x + y ) + 1 ]2

= ( x + y )2 + 2( x + y ) + 1

= x2 + 2xy + y2 + 2x + 2y + 1

30 tháng 10 2020

Bài 1:

1.1

a) Ta có: \(A=\left(x+y\right)\left(x-y\right)+x\left(2x-1\right)+y\left(y+1\right)\)

\(=x^2-y^2+2x^2-x+y^2+y\)

\(=3x^2-x+y\)

b) Thay x=1 và y=2018 vào biểu thức \(A=3x^2-x+y\), ta được:

\(A=3\cdot1^2-1+2018\)

\(=2+2018=2020\)

Vậy: Khi x=1 và y=2018 thì A=2020

1.2

a) Ta có: \(2x^2\left(x^2-3x+1\right)\)

\(=2x^2\cdot x^2-2x^2\cdot3x+2x^2\cdot1\)

\(=2x^4-6x^3+2x^2\)

b) Ta có: \(\left(2x-1\right)\left(6x^2+3x-3\right)\)

\(=2x\cdot6x^2+2x\cdot3x-2x\cdot3-6x^2-3x+3\)

\(=12x^3+6x^2-6x-6x^2-3x+3\)

\(=12x^3-9x+3\)

1.3

a) Ta có: \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

b) Ta có: \(x^2-xy-8x+8y\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-y\right)\left(x-8\right)\)

30 tháng 10 2020

1.1

a) A= (x+y).(x-y) + x(2x-1) + y(y+1)

= x2- x.y + x.y - y2 + 2x2 - x +y2 + y = 3x2 - x + y

b) Ta có A= 3x2 - x + y; thay x=1,y=2018 vào biểu thức:

A= 3.12 - 1+ 2018 = 2020

1.3

a)x3 - 2x2 + x = x.( x2 - 2x + 1) = x.(x-1)2

b) x2 - xy - 8x + 8y = x.(x - y) - 8.(x - y)= (x - y).(x-8).

Xin lỗi nha, tớ không biết làm bài 1.2.

Chúc bạn học tốt!!