\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\) ĐKXĐ: ...
\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)
\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)
\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)
\(A=1-\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right)\)
\(A=1-\left(\frac{-1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-\sqrt{x}+1}\right).\left(2\sqrt{x}-1\right)\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(2\sqrt{x}-1\right)}\)
\(A=1-\left(-1+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-\sqrt{x}+1}\right)\sqrt{x}\left(1-\sqrt{x}\right)\)
\(A=1-\left(\frac{-x+\sqrt{x}-1+x-\sqrt{x}}{x-\sqrt{x}+1}\right)\sqrt{x}\left(1-\sqrt{x}\right)\)
\(A=1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-\sqrt{x}+1}=\frac{x-\sqrt{x}+1-x+\sqrt{x}}{x-\sqrt{x}+1}=\frac{1}{x-\sqrt{x}+1}\)