Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(16^3:8^4=\left(2^4\right)^3:\left(2^3\right)^4=2^{12}:2^{12}=1\)
\(4^5\cdot9^4-2.6^9=\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9=2^{10}.3^8-2.2^9.3^9=2^{10}.3^8-2^{10}.3^9=3^8-3^9=-13122\)
\(2^{10}.3^8+6^8.20=2^{10}.3^8+\left(2.3\right)^8.2^2.5=2^{10}.3^8+2^8.3^8.2^2.5=2^{10}.3^8+2^{10}.3^8.5=2^{10}.3^8.\left(1+5\right)=2^{10}.3^8.6=2^{10}.3^8.2.3=2^{11}.3^9\)
Đặt \(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Ta có:
\(3=2^2-1\)
Do đó:
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
Liên tiếp áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)ta được:
\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32
kb và k cho mk nhé!!!!!!!!!! ^_^ ^_^
Ta có
A=410+84/45+86
A=410+23.4/22.5+86
A=410+212/210+86
A=410+22+86
Ko biết đúng ko nữa,... nếu đúng thì k nhé!
HAND!!!
\(\frac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+\left(3^2+3^6+3^{10}+3^{14}\right)}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+3^2\left(1+3^4+3^8+3^{12}\right)}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)\left(1+3^2\right)}\)
\(=\frac{1}{1+3^2}\)\(=\frac{1}{10}\)
\(2^4.4^8.8^{16}=2^4.2^{16}.2^{48}=2^{68}\)
24.48.816=24.(22)8.(23)16=24.216.248=24+16+48=268