Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
= \(\sqrt{18-6\sqrt{6}+3}\)
= \(\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
= \(\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
= \(|3\sqrt{2}-\sqrt{3}|\)
= \(3\sqrt{2}-\sqrt{3}\)
b)
= \(\sqrt{\frac{7}{2}-\sqrt{7}+\frac{1}{2}}\)
= \(\sqrt{\left(\sqrt{\frac{7}{2}}\right)^2+2\cdot\sqrt{\frac{7}{2}}\cdot\sqrt{\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}\)
= \(\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right)^2}\)
= \(|\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}|\)
= \(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\)
c)
= \(\sqrt{3+2\sqrt{3}+1}\)
= \(\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)
= \(\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
d)
Đặt t = \(\sqrt{x-1}\left(ĐK:t\ge0\right)\)
= \(\sqrt{t^2+1-2t}\)
= \(\sqrt{\left(t+1\right)^2}\)
\(=t+1\)
= \(\sqrt{x-1}+1\)
\(\sqrt{21-6\sqrt{6}}=\sqrt{18-2\sqrt{9}\sqrt{6}+3}=\sqrt{\left(\sqrt{18}\right)^2-2\sqrt{18}\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}=\sqrt{18}+\sqrt{3}=\sqrt{3}+3\sqrt{2}\)
\(\sqrt{4-\sqrt{7}}=\frac{\sqrt{2}\sqrt{4-\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7-2\sqrt{7}+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}-1}{\sqrt{2}}=\frac{\sqrt{14}-\sqrt{2}}{2}\)
\(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Với \(x\ge1\)thì \(\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}\sqrt{1}+\left(\sqrt{1}\right)^2}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1\)
T đã tốn mấy phút cuộc đời viết lời giải cho bạn r, tiếc j mấy giây mà bấm k cho t ik =))
a/A\(=\frac{x+2}{x-\sqrt{x}-2}-\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{1-\sqrt{x}}{\sqrt{x}-2}\)
\(=\frac{x+2-2\sqrt{x}\left(\sqrt{x}-2\right)-\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2-2x+4\sqrt{x}-1+x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
Thay x=16 vào A ta có: A\(=\frac{3}{2}\)
b/ B= \(1-\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
\(\frac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}=\frac{1}{\sqrt{x}-2}\)
=>C=\(\frac{4\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{1}{\sqrt{x}-2}\)=\(\frac{4\sqrt{x}-1}{\sqrt{x}+1}\)
c/Để C thuộc Z thì \(\frac{4\sqrt{x}-1}{\sqrt{x}+1}\) thuộc Z
C\(=\text{}\frac{4\sqrt{x}-1}{\sqrt{x}+1}=\frac{4\sqrt{x}+4}{\sqrt{x}+1}-\frac{5}{\sqrt{x}+1}=4-\frac{5}{\sqrt{x}+1}\)
=> \(5⋮\left(\sqrt{x}+1\right)
\Leftrightarrow\sqrt{x}+1\in\left\{-5;-1;1;5\right\}\)
Nhận xét: \(\sqrt{x}+1\ge1\)
\(\Rightarrow\sqrt{x}+1\in\left\{1;5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;4\right\}
\Leftrightarrow x\in\left\{0;16\right\}\)
Vậy \(x\in\left\{0;16\right\}\) thì C thuộc Z
Chúc bạn học tốt!
a) \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\orbr{\begin{cases}x\ge3\\x\ge-3\end{cases}}\)
b) \(-x-2\ge0\Leftrightarrow-x\ge2\Leftrightarrow x\ge-2\)
c) \(x^2+2x+1=\left(x+1\right)^2\)
\(\Rightarrow\left(x+1\right)^2\ge0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)
Em thử nha,sai thì thôi ạ.
2/ ĐK: \(-2\le x\le2\)
PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)
Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk
PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)
\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)
Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..
1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ĐK \(x\ge-1\)
Nhân liên hợp ta có
\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)
=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
a. \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(x+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\sqrt{x}+3}\)
. \(x=2.\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(\Rightarrow x=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\sqrt{2}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^3\)\(=4\left(\sqrt{5}-\sqrt{3}\right)\)
Thay \(x=4\left(\sqrt{5}-\sqrt{3}\right)\Rightarrow A=\frac{3}{\sqrt{4\left(\sqrt{5}-\sqrt{3}\right)}+3}\)
\(=\frac{3}{2\sqrt{\left(\sqrt{5}-\sqrt{3}\right)}+3}\)
b, bạn kiểm tra lại đề nhé
c, \(\frac{x\sqrt{x}-8+2x-4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{x-4}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-4\right)}{x-4}=\sqrt{x}+2\)