Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để (d) đi qua M(2;5) thì Thay x=2 và y=5 vào (d), ta được:
\(2m\cdot2-2m+3=5\)
\(\Leftrightarrow4m-2m=5-3\)
\(\Leftrightarrow2m=2\)
\(\Leftrightarrow m=1\)
Vậy: Để (d) đi qua M(2;5) thì m=1
b) Phương trình hoành độ của (d) và (P) là:
\(x^2=2mx-2m+3\)
\(\Leftrightarrow x^2-2mx+2m-3=0\)
\(\Delta=\left(-2m\right)^2-4\cdot1\cdot\left(2m-3\right)=4m^2-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=4m^2-8m+12=\left(2m\right)^2-2\cdot2m\cdot2+4+8\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+8>0\forall m\)
Suy ra: (d) và (P) luôn cắt nhau tại hai điểm phân biệt với mọi m
b: Thay m=2 vào (d), ta được:
y=2x-2+1=2x-1
Phương trình hoành độ giao điểm là:
\(x^2=2x-1\)
=>\(x^2-2x+1=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-m+1\)
=>\(x^2-2x+m-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
=4-4m+4
=-4m+8
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
y1,y2 thỏa mãn gì vậy bạn?
a) pt hoành độ giao điểm: \(x^2-2x+3-m^2=0\)
Để đường thẳng d cắt (P) tại 2 điểm phân biệt thì \(\Delta'>0\)
\(\Delta'=1+m^2-3\Rightarrow m^2-2>0\Rightarrow\left|m\right|>\sqrt{2}\)
b) Gọi giao điểm là \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)
\(\Rightarrow A\left(x_1,x_1^2\right);B\left(x_2,x_2^2\right)\)
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3-m^2\end{matrix}\right.\)
Theo đề: \(y_1-y_2=8\Rightarrow x_1^2-x_2^2=8\Rightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=8\)
\(\Rightarrow x_1-x_2=4>0\)
Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=4m^2-8\)
\(\Rightarrow x_1-x_2=\sqrt{4m^2-8}\left(x_1-x_2>0\right)\Rightarrow4=\sqrt{4m^2-8}\)
\(\Rightarrow4m^2-8=16\Rightarrow m=\pm\sqrt{6}\)
a) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{x^2}{2}=mx-m+2\)
\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)
\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)=m^2-2m+4>0\forall m\)
Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m+1=-3
hay m=-4
\(\Delta=\left(-2m\right)^2-4\left(2m-3\right)\)
=4m^2-8m+12
=4m^2-8m+4+8
=(2m-2)^2+8>0
=>PT luôn có hai nghiệm phân biệt
y1+y2<9
=>x1^2+x2^2<9
=>(x1+x2)^2-2x1x2<9
=>(2m)^2-2(2m-3)<9
=>4m^2-4m+6-9<0
=>4m^2-4m-3<0
=>-1/2<m<3/2
mà m là số nguyên lớn nhất
nên m=1
a, tung độ=2⇒y=2
Thay y=2 vào (P) ta có:
\(x^2\)=2⇒x=\(\sqrt{2}\) và -\(\sqrt{2}\)
Vậy...
b, Xét pt hoành độ:
x2=2mx+3\(\Rightarrow\)x2-2mx-3=0
△=(-2m)2-4.(-3)=4m2+12>0\(\forall\)m
Vậy (P) và (d) luôn cắt nhau tại 2 điểm phân biệt với mọi m.
Gọi giao điểm của (P) và (d) là (x1;y1) và (x2;y2) ⇒y1=x12 và y2=x22
Theo hệ thức Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=-3\end{matrix}\right.\)
Theo bài: y1+y2<9
⇔x12+x22<9
⇔(x1+x2)2-2x1x2<9
⇔(2m)2-2.(-3)<9
⇔4m2+6<9
⇔4m2<3
⇔m<\(\pm\sqrt{\dfrac{3}{4}}\)
Vậy...